Câu hỏi:

04/11/2025 3 Lưu

Cho hàm số \(f\left( x \right)\) liên tục trên \(\left[ { - 1;5} \right]\) và có đồ thị trên đoạn \(\left[ { - 1;5} \right]\) như hình vẽ bên dưới. Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ { - 1;5} \right]\) bằng
 
 
Cho hàm số \(f\left( x \right)\) liên tục trên \(\left[ { - 1;5} \right]\) (ảnh 1)

A. \( - 1\).

B. \(4\).           

C. \(1\).               

 D. \(2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Từ đồ thị ta thấy: \(\left\{ \begin{array}{l}M = \mathop {\max }\limits_{\left[ { - 1;5} \right]} f\left( x \right) = 3\\n = \mathop {\min }\limits_{\left[ { - 1;5} \right]} f\left( x \right) = - 2\end{array} \right. \Rightarrow M + n = 1.\) Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left( {0;\,\,2} \right)\).
B. \(\left( {0;\,\, + \infty } \right)\).
C. \(\left( {0;\,\,4} \right)\).

D. \(\left( { - 1;\,1} \right)\)

Lời giải

Quan sát đồ thị, ta thấy hàm số đồng biến trên khoảng \(\left( { - 1;\,1} \right)\). Chọn D.

 

Lời giải

Hàm số đã cho có tập xác định là \[\mathbb{R}\backslash \left\{ { - 1} \right\}\].

Ta có \[y' = \frac{{{x^2} + 2x - 3}}{{{{\left( {x + 1} \right)}^2}}}\] với \[x \ne - 1\]; \[y' = 0 \Leftrightarrow {x^2} + 2x - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 3\\x = 1\end{array} \right.\].

Ta có bảng biến thiên của hàm số như sau:

Media VietJack

Giá trị cực đại của hàm số bằng \[ - 5\], giá trị cực tiểu của hàm số bằng \[3\].

Vậy \[P = {m^3} + {n^3} = {\left( { - 5} \right)^3} + {3^3} = - 98\].

Đáp án: −98.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP