Nếu trong một ngày, một xưởng sản xuất được \(x\) chiếc vợt cầu lông thì chi phí trung bình (tính bằng nghìn đồng) cho một chiếc vợt cầu lông được cho bởi công thức \(C\left( x \right) = \frac{{5x + 1}}{x}\). Xét trong một khoảng thời gian dài, xưởng sản xuất đã sản xuất được “rất nhiều” chiếc vợt cầu lông. Vậy cho đến nay, chi phí sản xuất mỗi chiếc vợt cầu lông là bao nhiêu nghìn đồng?
Nếu trong một ngày, một xưởng sản xuất được \(x\) chiếc vợt cầu lông thì chi phí trung bình (tính bằng nghìn đồng) cho một chiếc vợt cầu lông được cho bởi công thức \(C\left( x \right) = \frac{{5x + 1}}{x}\). Xét trong một khoảng thời gian dài, xưởng sản xuất đã sản xuất được “rất nhiều” chiếc vợt cầu lông. Vậy cho đến nay, chi phí sản xuất mỗi chiếc vợt cầu lông là bao nhiêu nghìn đồng?
Quảng cáo
Trả lời:
Chi phí sản xuất mỗi chiếc vợt cầu lông là: \(\mathop {\lim }\limits_{x \to + \infty } C\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{5x + 1}}{x}} \right) = 5\).
Vậy cho đến nay, chi phí sản xuất mỗi chiếc vợt cầu lông là \(5\) nghìn đồng.
Đáp án: 5.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(y = f\left( x \right) = 4x - 3 + \frac{1}{{x - 2}}\).
Do đó, đồ thị hàm số \(f\left( x \right)\) có tiệm cận xiên là \(y = 4x - 3\).
Mặt khác, \(\mathop {\lim }\limits_{x \to {2^ + }} \left( {4x - 3 + \frac{1}{{x - 2}}} \right) = + \infty \) do đó \(x = 2\) là tiệm cận đứng của đồ thị hàm số \(f\left( x \right)\).
Ta có tâm đối xứng của đồ thị hàm số trên là giao điểm của \(y = 4x - 3\) và \(x = 2\); vậy ta được \(I\left( {2;5} \right)\). Suy ra \(a - 3b = 2 - 3 \cdot 5 = - 13\).
Đáp án: −13.
Lời giải
Hàm số đã cho có tập xác định là \[\mathbb{R}\backslash \left\{ { - 1} \right\}\].
Ta có \[y' = \frac{{{x^2} + 2x - 3}}{{{{\left( {x + 1} \right)}^2}}}\] với \[x \ne - 1\]; \[y' = 0 \Leftrightarrow {x^2} + 2x - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 3\\x = 1\end{array} \right.\].
Ta có bảng biến thiên của hàm số như sau:

Giá trị cực đại của hàm số bằng \[ - 5\], giá trị cực tiểu của hàm số bằng \[3\].
Vậy \[P = {m^3} + {n^3} = {\left( { - 5} \right)^3} + {3^3} = - 98\].
Đáp án: −98.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
D. \(\left( { - 1;\,1} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(x = - 2\).
B. \(x = 0\).
C. \(\left( { - 2\,;\, - 2} \right)\).
D. \(\left( {0\,;\, - 2} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


