PHẦN II. TỰ LUẬN (3,0 điểm)
(1,5 điểm)
a) Tính giá trị lượng giác \[\tan \left( {\alpha + \frac{\pi }{3}} \right)\] khi \[\sin \alpha = \frac{3}{5},\,\,\frac{\pi }{2} < \alpha < \pi \].
b) Giải phương trình \(\cos \left( {\frac{\pi }{3} + 3x} \right) + \cos \left( {\frac{{2\pi }}{3} - 4x} \right) + \cos x = 1.\)
c) Ngọn đèn trên hải đăng \(H\) cách bờ biển \(yy'\) một khoảng \(HO = 1\,{\rm{km}}\). Đèn xoay ngược chiều kim đồng hồ với tốc độ \(\frac{\pi }{{10}}\,{\rm{rad}}/{\rm{s}}\) và chiếu hai luồng ánh sáng về hai phía đối diện nhau. Khi đèn xoay, điểm \(M\) mà luồng ánh sáng của hải đăng rọi vào bờ biển chuyển động dọc theo bờ. Ban đầu luồng sáng trùng với đường thẳng \(HO\).

Viết hàm số biểu thị toạ độ \({y_M}\) của điểm \(M\) trên trục \(Oy\) theo thời gian \(t\) và xác định thời điểm \(t\) mà đèn hải đăng chiếu vào ngôi nhà \(N\) nằm trên bờ biển với toạ độ \({y_N} = - 1\,\left( {{\rm{km}}} \right)\).
PHẦN II. TỰ LUẬN (3,0 điểm)
(1,5 điểm)
a) Tính giá trị lượng giác \[\tan \left( {\alpha + \frac{\pi }{3}} \right)\] khi \[\sin \alpha = \frac{3}{5},\,\,\frac{\pi }{2} < \alpha < \pi \].
b) Giải phương trình \(\cos \left( {\frac{\pi }{3} + 3x} \right) + \cos \left( {\frac{{2\pi }}{3} - 4x} \right) + \cos x = 1.\)
|
c) Ngọn đèn trên hải đăng \(H\) cách bờ biển \(yy'\) một khoảng \(HO = 1\,{\rm{km}}\). Đèn xoay ngược chiều kim đồng hồ với tốc độ \(\frac{\pi }{{10}}\,{\rm{rad}}/{\rm{s}}\) và chiếu hai luồng ánh sáng về hai phía đối diện nhau. Khi đèn xoay, điểm \(M\) mà luồng ánh sáng của hải đăng rọi vào bờ biển chuyển động dọc theo bờ. Ban đầu luồng sáng trùng với đường thẳng \(HO\). |
|
Viết hàm số biểu thị toạ độ \({y_M}\) của điểm \(M\) trên trục \(Oy\) theo thời gian \(t\) và xác định thời điểm \(t\) mà đèn hải đăng chiếu vào ngôi nhà \(N\) nằm trên bờ biển với toạ độ \({y_N} = - 1\,\left( {{\rm{km}}} \right)\).
Câu hỏi trong đề: Bộ 10 đề thi Giữa kì 1 Toán 10 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
a) Vì \[\frac{\pi }{2} < \alpha < \pi \] nên \[\cos \alpha < 0\].
Ta có: \[{\sin ^2}\alpha + co{s^2}\alpha = 1\].
Suy ra: \[cos\alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - \frac{4}{5} \Rightarrow \tan \alpha = - \frac{3}{4}\].
Vậy \[\tan \left( {\frac{\pi }{3} + \alpha } \right) = \frac{{\tan \frac{\pi }{3} + \tan \alpha }}{{1 - \tan \frac{\pi }{3}\tan \alpha }} = \frac{{48 - 25\sqrt 3 }}{{11}}\].
b) \(\cos \left( {\frac{\pi }{3} + 3x} \right) + \cos \left( {\frac{{2\pi }}{3} - 4x} \right) + \cos x = 1\)
\( \Leftrightarrow \cos \left( {\frac{\pi }{3} + 3x} \right) + \cos \left( {\frac{{2\pi }}{3} - 4x} \right) = 1 - \cos x\)
\( \Leftrightarrow 2\cos \left( {\frac{\pi }{2} - \frac{x}{2}} \right)\cos \left( {\frac{{7x}}{2} - \frac{\pi }{6}} \right) = 2{\sin ^2}\frac{x}{2} \Leftrightarrow 2\sin \frac{x}{2}\cos \left( {\frac{{7x}}{2} - \frac{\pi }{6}} \right) = 2{\sin ^2}\frac{x}{2}\)
\( \Leftrightarrow \sin \frac{x}{2}\left[ {\cos \left( {\frac{{7x}}{2} - \frac{\pi }{6}} \right) - \sin \frac{x}{2}} \right] = 0 \Leftrightarrow \sin \frac{x}{2}\left[ {\cos \left( {\frac{{7x}}{2} - \frac{\pi }{6}} \right) - \cos \left( {\frac{\pi }{2} - \frac{x}{2}} \right)} \right] = 0.\)
● \(\sin \frac{x}{2} = 0 \Leftrightarrow \frac{x}{2} = k\pi \Leftrightarrow x = k2\pi \) \(\left( {k \in \mathbb{Z}} \right)\).
● \(\cos \left( {\frac{{7x}}{2} - \frac{\pi }{6}} \right) - \cos \left( {\frac{\pi }{2} - \frac{x}{2}} \right) = 0 \Leftrightarrow \cos \left( {\frac{{7x}}{2} - \frac{\pi }{6}} \right) = \cos \left( {\frac{\pi }{2} - \frac{x}{2}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}\frac{{7x}}{2} - \frac{\pi }{6} = \frac{\pi }{2} - \frac{x}{2} + k2\pi \\\frac{{7x}}{2} - \frac{\pi }{6} = - \left( {\frac{\pi }{2} - \frac{x}{2}} \right) + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k\frac{\pi }{2}\\x = - \frac{\pi }{9} + k\frac{{2\pi }}{3}\end{array} \right.\) \(\left( {k \in \mathbb{Z}} \right)\).
Vậy phương trình đã cho có nghiệm \(x = k2\pi \); \(x = \frac{\pi }{6} + k\frac{\pi }{2}\); \(x = - \frac{\pi }{9} + k\frac{{2\pi }}{3}\), \(\left( {k \in \mathbb{Z}} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Từ đồ thị hàm số ta có
Trên khoảng \[\left( { - \infty ;0} \right)\], đồ thị hàm số đi lên từ trái sang phải nên hàm số đồng biến trên khoảng \[\left( { - \infty ;0} \right)\].
Trên khoảng \[\left( {0;2} \right)\], đồ thị hàm số đi xuống từ trái sang phải nên hàm số nghịch biến trên khoảng \[\left( {0;2} \right)\].
Trên khoảng \[\left( {2; + \infty } \right)\], đồ thị hàm số đi lên từ trái sang phải nên hàm số đồng biến trên khoảng \[\left( {2; + \infty } \right)\].
Vậy khẳng định C đúng.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Với vectơ \(\overrightarrow a \) khác \(\overrightarrow 0 \) và một số thực \(k \ne 0\), ta có hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn cùng phương với nhau.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

