Câu hỏi:

05/11/2025 118 Lưu

PHẦN II. TỰ LUẬN (3,0 điểm)

(1,5 điểm)

a) Tính giá trị lượng giác \[\tan \left( {\alpha + \frac{\pi }{3}} \right)\] khi \[\sin \alpha = \frac{3}{5},\,\,\frac{\pi }{2} < \alpha < \pi \].

b) Giải phương trình \(\cos \left( {\frac{\pi }{3} + 3x} \right) + \cos \left( {\frac{{2\pi }}{3} - 4x} \right) + \cos x = 1.\)

c) Ngọn đèn trên hải đăng \(H\) cách bờ biển \(yy'\) một khoảng \(HO = 1\,{\rm{km}}\). Đèn xoay ngược chiều kim đồng hồ với tốc độ \(\frac{\pi }{{10}}\,{\rm{rad}}/{\rm{s}}\) và chiếu hai luồng ánh sáng về hai phía đối diện nhau. Khi đèn xoay, điểm \(M\) mà luồng ánh sáng của hải đăng rọi vào bờ biển chuyển động dọc theo bờ. Ban đầu luồng sáng trùng với đường thẳng \(HO\).

Tính giá trị lượng giác \[\tan \lef (ảnh 1)

Viết hàm số biểu thị toạ độ \({y_M}\) của điểm \(M\) trên trục \(Oy\) theo thời gian \(t\) và xác định thời điểm \(t\) mà đèn hải đăng chiếu vào ngôi nhà \(N\) nằm trên bờ biển với toạ độ \({y_N} = - 1\,\left( {{\rm{km}}} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Vì \[\frac{\pi }{2} < \alpha  < \pi \] nên \[\cos \alpha  < 0\].

Ta có: \[{\sin ^2}\alpha  + co{s^2}\alpha  = 1\].

Suy ra: \[cos\alpha  =  - \sqrt {1 - {{\sin }^2}\alpha }  =  - \frac{4}{5} \Rightarrow \tan \alpha  =  - \frac{3}{4}\].

Vậy \[\tan \left( {\frac{\pi }{3} + \alpha } \right) = \frac{{\tan \frac{\pi }{3} + \tan \alpha }}{{1 - \tan \frac{\pi }{3}\tan \alpha }} = \frac{{48 - 25\sqrt 3 }}{{11}}\].

b) \(\cos \left( {\frac{\pi }{3} + 3x} \right) + \cos \left( {\frac{{2\pi }}{3} - 4x} \right) + \cos x = 1\)

\( \Leftrightarrow \cos \left( {\frac{\pi }{3} + 3x} \right) + \cos \left( {\frac{{2\pi }}{3} - 4x} \right) = 1 - \cos x\)

\( \Leftrightarrow 2\cos \left( {\frac{\pi }{2} - \frac{x}{2}} \right)\cos \left( {\frac{{7x}}{2} - \frac{\pi }{6}} \right) = 2{\sin ^2}\frac{x}{2} \Leftrightarrow 2\sin \frac{x}{2}\cos \left( {\frac{{7x}}{2} - \frac{\pi }{6}} \right) = 2{\sin ^2}\frac{x}{2}\)

\( \Leftrightarrow \sin \frac{x}{2}\left[ {\cos \left( {\frac{{7x}}{2} - \frac{\pi }{6}} \right) - \sin \frac{x}{2}} \right] = 0 \Leftrightarrow \sin \frac{x}{2}\left[ {\cos \left( {\frac{{7x}}{2} - \frac{\pi }{6}} \right) - \cos \left( {\frac{\pi }{2} - \frac{x}{2}} \right)} \right] = 0.\)

● \(\sin \frac{x}{2} = 0 \Leftrightarrow \frac{x}{2} = k\pi  \Leftrightarrow x = k2\pi \) \(\left( {k \in \mathbb{Z}} \right)\).

● \(\cos \left( {\frac{{7x}}{2} - \frac{\pi }{6}} \right) - \cos \left( {\frac{\pi }{2} - \frac{x}{2}} \right) = 0 \Leftrightarrow \cos \left( {\frac{{7x}}{2} - \frac{\pi }{6}} \right) = \cos \left( {\frac{\pi }{2} - \frac{x}{2}} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}\frac{{7x}}{2} - \frac{\pi }{6} = \frac{\pi }{2} - \frac{x}{2} + k2\pi \\\frac{{7x}}{2} - \frac{\pi }{6} =  - \left( {\frac{\pi }{2} - \frac{x}{2}} \right) + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k\frac{\pi }{2}\\x =  - \frac{\pi }{9} + k\frac{{2\pi }}{3}\end{array} \right.\) \(\left( {k \in \mathbb{Z}} \right)\).

Vậy phương trình đã cho có nghiệm \(x = k2\pi \); \(x = \frac{\pi }{6} + k\frac{\pi }{2}\); \(x =  - \frac{\pi }{9} + k\frac{{2\pi }}{3}\), \(\left( {k \in \mathbb{Z}} \right)\).

c) Dựa vào hệ trục ta có:

\(\tan \alpha  = \frac{{OM}}{{OH}} \Rightarrow OM = OH.\tan \alpha \)

Với \(\alpha  = \frac{\pi }{{10}}t\) \( \Rightarrow {y_M} = 1.\tan \left( {\frac{\pi }{{10}}t} \right) = \tan \left( {\frac{\pi }{{10}}t} \right)\)

Khi \({y_N} =  - 1 \Rightarrow \tan \left( {\frac{\pi }{{10}}t} \right) =  - 1\)

\( \Leftrightarrow \frac{\pi }{{10}}t = \frac{{3\pi }}{4} + k\pi ,k \in \mathbb{Z}\)

\( \Leftrightarrow t = \frac{{15}}{2} + 10k,k \in \mathbb{Z}\) và \(k \ge 0\).

Tính giá trị lượng giác \[\tan \lef (ảnh 2)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Hàm số nghịch biến trên khoảng \[\left( {0;3} \right)\];
B. Hàm số đồng biến trên khoảng \[\left( { - \infty ;1} \right)\];
C. Hàm số nghịch biến trên khoảng \[\left( {0;2} \right)\];
D. Hàm số đồng biến trên khoảng \[\left( { - \infty ;3} \right)\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Từ đồ thị hàm số ta có

Trên khoảng \[\left( { - \infty ;0} \right)\], đồ thị hàm số đi lên từ trái sang phải nên hàm số đồng biến trên khoảng \[\left( { - \infty ;0} \right)\].

Trên khoảng \[\left( {0;2} \right)\], đồ thị hàm số đi xuống từ trái sang phải nên hàm số nghịch biến trên khoảng \[\left( {0;2} \right)\].

Trên khoảng \[\left( {2; + \infty } \right)\], đồ thị hàm số đi lên từ trái sang phải nên hàm số đồng biến trên khoảng \[\left( {2; + \infty } \right)\].

Vậy khẳng định C đúng.

Câu 2

A. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn cùng phương;      
B. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn cùng hướng; 
C. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) có độ dài bằng nhau;        
D. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn ngược hướng.

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Với vectơ \(\overrightarrow a \) khác \(\overrightarrow 0 \) và một số thực \(k \ne 0\), ta có hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn cùng phương với nhau.

Câu 3

A. \(\overrightarrow {OA} + \overrightarrow {OB} - \overrightarrow {EO} = \overrightarrow 0 \);                                 
B. \(\overrightarrow {BC} - \overrightarrow {FE} = \overrightarrow {AD} \); 
C. \(\overrightarrow {OA} - \overrightarrow {OB} = \overrightarrow {EB} - \overrightarrow {OC} \); 
D. \(\overrightarrow {AB} + \overrightarrow {CD} - \overrightarrow {FE} = \overrightarrow 0 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 16,4;                       
B. 16,3;                            
C. 16,2;                            
D. 1\(6\),1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\overrightarrow {MN} = 2\overrightarrow {PQ} \); 
B. \(\overrightarrow {MQ} = 2\overrightarrow {NP} \);     
C. \(\overrightarrow {MN} = - 2\overrightarrow {PQ} \);     
D. \(\overrightarrow {MQ} = - 2\overrightarrow {NP} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Nếu \(\alpha > \beta \) thì \(\tan \alpha > \tan \beta \);                                                                     
B. Nếu \(\alpha = - \beta \) thì \[{\rm{cos}}\alpha = {\rm{cos}}\beta \];                                 
C. Nếu \(\alpha > \beta \) thì \(\sin \alpha = - \sin \beta \);                                                                     
D. Nếu \(\alpha = - \beta \) thì \(\cot \alpha = \cot \beta \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP