PHẦN II. TỰ LUẬN (3,0 điểm)
(1,5 điểm)
a) Cho góc \(\alpha \) thỏa mãn \[\cos \alpha = - \frac{4}{5}\] và \[\pi < \alpha < \frac{{3\pi }}{2}.\] Tính \[P = \sin \frac{\alpha }{2}.\cos \frac{{3\alpha }}{2}.\]
b) Giải phương trình \[\cos 2\left( {x + \frac{\pi }{3}} \right) + 4\cos \left( {\frac{\pi }{6} - x} \right) = \frac{5}{2}.\]
c) Phương trình của một sóng cơ học có dạng \(u\left( {x,t} \right) = A\cos \left[ {\omega \left( {t - \frac{x}{v}} \right)} \right]\) trong đó \(A\) là biên độ sóng, \(\omega \) là tần số góc của sóng và \(v\) là tốc độ truyền sóng. Biết hai sóng lan truyền theo cùng một chiều trên cùng một sợi dây kéo căng có cùng tần số, cùng biên độ \(10\left( {mm} \right)\) và hiệu số pha là \(\frac{\pi }{2}\). Hãy lập phương trình của sóng tổng hợp?
PHẦN II. TỰ LUẬN (3,0 điểm)
(1,5 điểm)
a) Cho góc \(\alpha \) thỏa mãn \[\cos \alpha = - \frac{4}{5}\] và \[\pi < \alpha < \frac{{3\pi }}{2}.\] Tính \[P = \sin \frac{\alpha }{2}.\cos \frac{{3\alpha }}{2}.\]
b) Giải phương trình \[\cos 2\left( {x + \frac{\pi }{3}} \right) + 4\cos \left( {\frac{\pi }{6} - x} \right) = \frac{5}{2}.\]
c) Phương trình của một sóng cơ học có dạng \(u\left( {x,t} \right) = A\cos \left[ {\omega \left( {t - \frac{x}{v}} \right)} \right]\) trong đó \(A\) là biên độ sóng, \(\omega \) là tần số góc của sóng và \(v\) là tốc độ truyền sóng. Biết hai sóng lan truyền theo cùng một chiều trên cùng một sợi dây kéo căng có cùng tần số, cùng biên độ \(10\left( {mm} \right)\) và hiệu số pha là \(\frac{\pi }{2}\). Hãy lập phương trình của sóng tổng hợp?
Câu hỏi trong đề: Bộ 10 đề thi Giữa kì 1 Toán 10 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
a) Ta có \[P = \sin \frac{\alpha }{2}.\cos \frac{{3\alpha }}{2} = \frac{1}{2}\left( {\sin 2\alpha - \sin \alpha } \right) = \frac{1}{2}\sin \alpha \left( {2\cos \alpha - 1} \right)\].
Từ hệ thức \[{\sin ^2}\alpha + {\cos ^2}\alpha = 1\], suy ra \[\sin \alpha = \pm \sqrt {1 - {{\cos }^2}\alpha } = \pm \frac{3}{5}\].
Do \[\pi < \alpha < \frac{{3\pi }}{2}\] nên ta chọn \[\sin \alpha = - \frac{3}{5}\].
Thay \[\sin \alpha = - \frac{3}{5}\] và \[\cos \alpha = - \frac{4}{5}\] vào \(P\), ta được \(P = \frac{{39}}{{50}}.\)
b) \[\cos 2\left( {x + \frac{\pi }{3}} \right) + 4\cos \left( {\frac{\pi }{6} - x} \right) = \frac{5}{2}\]
⦁ Ta có: \[\cos 2\left( {x + \frac{\pi }{3}} \right) = 1 - 2{\sin ^2}\left( {x + \frac{\pi }{3}} \right) = 1 - 2{\cos ^2}\left( {\frac{\pi }{6} - x} \right)\]
⦁ Phương trình đã cho trở thành:
\[ - \,2{\cos ^2}\left( {\frac{\pi }{6} - x} \right) + 4\cos \left( {\frac{\pi }{6} - x} \right) - \frac{3}{2} = 0\]
\[ \Leftrightarrow \left[ \begin{array}{l}\cos \left( {\frac{\pi }{6} - x} \right) = \frac{1}{2}\\\cos \left( {\frac{\pi }{6} - x} \right) = \frac{3}{2}\left( {loai} \right)\end{array} \right.\]
\[ \Leftrightarrow \cos \left( {\frac{\pi }{6} - x} \right) = \frac{1}{2}\]
\[ \Leftrightarrow \frac{\pi }{6} - x = \pm \,\frac{\pi }{3} + k2\pi \]
\[ \Leftrightarrow \left[ \begin{array}{l}x = - \,\frac{\pi }{6} + k2\pi \\x = \frac{\pi }{2} + k2\pi \end{array} \right.,\,\,k \in \mathbb{Z}.\]
⦁ Vậy phương trình có hai họ nghiệm là \[x = - \,\frac{\pi }{6} + k2\pi ;x = \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}.\]
c) Sóng thứ nhất có phương trình \({u_1}\left( {x,t} \right) = 10\cos \left[ {\omega \left( {t - \frac{x}{v}} \right)} \right] = 10\cos \left( {\omega t - \frac{\omega }{v}x} \right)\)
Sóng thứ hai có phương trình \({u_2}\left( {x,t} \right) = 10\cos \left[ {\omega \left( {t - \frac{x}{v}} \right) + \frac{\pi }{2}} \right] = 10\cos \left( {\omega t - \frac{\omega }{v}x + \frac{\pi }{2}} \right)\)
Sóng tổng hợp có phương trình \(u\left( {x,t} \right) = 10\cos \left( {\omega t - \frac{\omega }{v}x} \right) + 10\cos \left( {\omega t - \frac{\omega }{v}x + \frac{\pi }{2}} \right)\)
\( \Leftrightarrow u\left( {x,t} \right) = 10.2.\cos \left( {\omega t - \frac{\omega }{v}x + \frac{\pi }{4}} \right).\cos \frac{\pi }{4} \Leftrightarrow u\left( {x,t} \right) = 10\sqrt 2 \cos \left( {\omega t - \frac{\omega }{v}x + \frac{\pi }{4}} \right)\) (mm).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ