Cho tam giác \(ABC\) có \(AB = 5,\,\,BC = 7,\,\,AC = 8\). Chiều cao xuất phát từ đỉnh \(A\) của tam giác \(ABC\) có độ dài là
Câu hỏi trong đề: Bộ 10 đề thi Giữa kì 1 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Kẻ \(AH \bot BC\)
Nửa chu vi tam giác \(ABC\) là: \(p = \frac{{5 + 7 + 8}}{2} = 10\).
Diện tích tam giác \(ABC\) là:
\(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = \sqrt {10\left( {10 - 5} \right)\left( {10 - 7} \right)\left( {10 - 8} \right)} = 10\sqrt 3 \) (đvdt).
Mặt khác, ta có:
\(S = \frac{1}{2}BC.AH = \frac{1}{2}.7.AH = \frac{7}{2}AH = 10\sqrt 3 \)
\( \Rightarrow AH = \frac{{20\sqrt 3 }}{7}\).
Vậy độ dài chiều cao xuất phát từ đỉnh \(A\) là: \(\frac{{20\sqrt 3 }}{7}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: C

Xét tam giác \(ABC\) có \(AH\) là đường cao.
Ta có \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AH} \) vậy \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \left| {2\overrightarrow {AH} } \right| = 2AH\)
Xét tam giác \(AHB\) vuông tại \(H\) có \(AB = 2a,\,BH = a\)
Áp dụng định lí Pitago ta có:
\(\begin{array}{l}A{H^2} = A{B^2} - B{H^2} = {\left( {2a} \right)^2} - {a^2} = 3{a^2}\\ \Rightarrow AH = a\sqrt 3 \end{array}\)
Vậy \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = 2a\sqrt 3 \).
Lời giải
Hướng dẫn giải
Gọi số tiền mà doanh nghiệp A dự định giảm giá là \(x\) ( triệu đồng) \(\left( {0 \le x \le 4} \right)\).
Tiền lãi khi bán được một xe là: \(31 - x - 27 = 4 - x\)(triệu đồng).
Số lượng xe bán được khi đã giảm giá là: \(600 + 200x\) (xe).
Lợi nhuận cửa hàng thu được là: \(\left( {600 + 200x} \right)\left( {4 - x} \right) = - 200{x^2} + 200x + 2\,\,400\)(triệu đồng).
Xét hàm số bậc hai \(y = - 200{x^2} + 200x + 2\,\,400\), có:
Đỉnh \(I\) có tọa độ: \({x_I} = - \frac{b}{{2a}} = - \frac{{200}}{{2.\left( { - 200} \right)}} = \frac{1}{2}\); \({y_I} = - \frac{\Delta }{{4a}} = - \frac{{1\,\,960\,\,000}}{{4.\left( { - 200} \right)}} = 2\,\,450\).
Hay \(I\left( {\frac{1}{2};2\,\,450} \right)\)
Ta có bảng biến thiên:

Dựa vào bảng biến thiên ta thấy, hàm số đạt giá trị lớn nhất là \(2\,450\) khi x = \(\frac{1}{2}\).
Vậy doanh nghiệp phải bán với giá \(30,5\) triệu đồng để lợi nhuận thu được là cao nhất.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.