Câu hỏi:

05/11/2025 489 Lưu

(1,0 điểm)

a) Cho hình chóp \(S.ABCD\). Gọi \(M\), \(N\) lần lượt là trung điểm của \(AB\)\(BC;\) \(G,\) \(G'\) lần lượt là trọng tâm các tam giác \(SAB\)\(SBC\). Chứng minh \(GG'\,{\rm{//}}\,\left( {SAC} \right)\).

b) Cho hình chóp \(S.ABCD\) có đáy là hình thang với \(AD\,{\rm{//}}\,BC\). Gọi \(G\) là trọng tâm của tam giác \(SAD;\) \(E\) là điểm thuộc đoạn \(AC\) sao cho \(EC = xEA,\,\,\left( {x > 0} \right)\). Tìm \(x\) để \(GE\,{\rm{//}}\,\left( {SBC} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Gọi \(K\) là trung điểm của \(SB\) suy ra \(G,\) \(G'\) thuộc mặt phẳng\(\left( {KAC} \right)\).

Ta có: \(G\) là trọng tâm tam giác \(SAB\) nên \(\frac{{KG}}{{KA}} = \frac{1}{3}\);

Và \(G'\) là trọng tâm tam giác \(SBC\) nên \(\frac{{KG'}}{{KC}} = \frac{1}{3}\)

Khi đó \(\frac{{KG}}{{KA}} = \frac{{KG'}}{{KC}}\), suy ra \(GG'{\rm{//}}AC\).

Vì \(\left\{ \begin{array}{l}GG'{\rm{//}}AC\\GG' \not\subset \left( {SAC} \right)\\AC \subset \left( {SAC} \right)\end{array} \right. \Rightarrow GG'{\rm{//}}\left( {SAC} \right)\).

Cho hình chóp \(S.ABCD\). Gọi \(M\), \(N\) l (ảnh 1)

Gọi \(I\) là trung điểm của cạnh \(AD.\)

Trong mặt phẳng \(\left( {ABCD} \right)\) giả sử \(IE\) và \(BC\) cắt nhau tại điểm \(Q\).

Dễ thấy \(SQ = \left( {IGE} \right) \cap \left( {SBC} \right)\).

Do đó: \(GE\,{\rm{//}}\,\left( {SBC} \right)\)\( \Leftrightarrow GE{\rm{//}}SQ\)

\( \Leftrightarrow \frac{{IE}}{{IQ}} = \frac{{IG}}{{IS}}\) \( \Rightarrow \frac{{IE}}{{IQ}} = \frac{1}{3}\)  (1)

Cho hình chóp \(S.ABCD\). Gọi \(M\), \(N\) l (ảnh 2)

Mặt khác  nên \(\frac{{EI}}{{EQ}} = \frac{{EA}}{{EC}} = \frac{{EA}}{{xEA}} = \frac{1}{x}\) suy ra \(EQ = x.EI\).

\( \Rightarrow \frac{{IE}}{{IQ}} = \frac{{IE}}{{IE + EQ}} = \frac{{IE}}{{IE + x.IE}} = \frac{1}{{1 + x}}\) (2)

Từ (1) và (2) \( \Rightarrow \frac{1}{{1 + x}} = \frac{1}{3}\) \( \Leftrightarrow x = 2\).

Vậy \(GE\,{\rm{//}}\,\left( {SBC} \right)\) \( \Leftrightarrow x = 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left| {\overrightarrow {AO} } \right| = \frac{{a\sqrt 3 }}{2}\)                                      
B. \(\left| {\overrightarrow {OA} } \right| = a\)                 
C. \(\left| {\overrightarrow {OA} } \right| = \left| {\overrightarrow {OB} } \right|\)                                    
D. \(\left| {\overrightarrow {OA} } \right| = \frac{{a\sqrt 2 }}{2}\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Hướng dẫn giải  Đáp án đúng là: A (ảnh 1)

\(\widehat A = 60^\circ \) nên \(\Delta ABC\) đều nên ta có \(A{O^2} = A{B^2} - B{O^2} = {a^2} - {\left( {\frac{a}{2}} \right)^2} = \frac{{3{a^2}}}{4}\)

\( \Rightarrow \left| {\overrightarrow {AO} } \right| = AO = \frac{{a\sqrt 3 }}{2}\).

Câu 2

A. \(\overrightarrow {BP} \);                          
B. \(\overrightarrow {MN} \);                             
C. \(\overrightarrow {CP} \);                              
D. \(\overrightarrow {PA} \).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Hướng dẫn giải  Đáp án đúng là: D (ảnh 1)

Xét tam giác \(ABC\), có: \(M,\,P\) lần lượt là trung điểm của \(AB,\,\,CA\) nên \(MP\) là đường trung bình của tam giác \(ABC\).

\( \Rightarrow MP = BN = \frac{1}{2}BC\)

Suy ra: \(\overrightarrow {MP} + \overrightarrow {NP} = \overrightarrow {BN} + \overrightarrow {NP} = \overrightarrow {BP} \).

Câu 3

A. \(2a\);                        
B. \(a\sqrt 3 \);          
C. \(2a\sqrt 3 \);   
D. \(\frac{{a\sqrt 3 }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Hai vectơ cùng phương nếu giá của chúng song song hoặc trùng nhau;
B. Hai vectơ được gọi là bằng nhau nếu độ dài của chúng bằng nhau;
C. Giá của vectơ là đường thẳng vuông góc với vectơ đó;
D. Vectơ không là vectơ có độ dài bằng mọi vectơ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.P¯:"x:x2=x";                                                                           
B. P¯:"x:x2x" ;
C. P¯:"x:x2x";                                                                           
D. P¯:"x:x2=x" .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP