Câu hỏi:

05/11/2025 23 Lưu

(1,0 điểm)

a) Cho hình chóp \(S.ABCD\). Gọi \(M\), \(N\) lần lượt là trung điểm của \(AB\)\(BC;\) \(G,\) \(G'\) lần lượt là trọng tâm các tam giác \(SAB\)\(SBC\). Chứng minh \(GG'\,{\rm{//}}\,\left( {SAC} \right)\).

b) Cho hình chóp \(S.ABCD\) có đáy là hình thang với \(AD\,{\rm{//}}\,BC\). Gọi \(G\) là trọng tâm của tam giác \(SAD;\) \(E\) là điểm thuộc đoạn \(AC\) sao cho \(EC = xEA,\,\,\left( {x > 0} \right)\). Tìm \(x\) để \(GE\,{\rm{//}}\,\left( {SBC} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Gọi \(K\) là trung điểm của \(SB\) suy ra \(G,\) \(G'\) thuộc mặt phẳng\(\left( {KAC} \right)\).

Ta có: \(G\) là trọng tâm tam giác \(SAB\) nên \(\frac{{KG}}{{KA}} = \frac{1}{3}\);

Và \(G'\) là trọng tâm tam giác \(SBC\) nên \(\frac{{KG'}}{{KC}} = \frac{1}{3}\)

Khi đó \(\frac{{KG}}{{KA}} = \frac{{KG'}}{{KC}}\), suy ra \(GG'{\rm{//}}AC\).

Vì \(\left\{ \begin{array}{l}GG'{\rm{//}}AC\\GG' \not\subset \left( {SAC} \right)\\AC \subset \left( {SAC} \right)\end{array} \right. \Rightarrow GG'{\rm{//}}\left( {SAC} \right)\).

Cho hình chóp \(S.ABCD\). Gọi \(M\), \(N\) l (ảnh 1)

Gọi \(I\) là trung điểm của cạnh \(AD.\)

Trong mặt phẳng \(\left( {ABCD} \right)\) giả sử \(IE\) và \(BC\) cắt nhau tại điểm \(Q\).

Dễ thấy \(SQ = \left( {IGE} \right) \cap \left( {SBC} \right)\).

Do đó: \(GE\,{\rm{//}}\,\left( {SBC} \right)\)\( \Leftrightarrow GE{\rm{//}}SQ\)

\( \Leftrightarrow \frac{{IE}}{{IQ}} = \frac{{IG}}{{IS}}\) \( \Rightarrow \frac{{IE}}{{IQ}} = \frac{1}{3}\)  (1)

Cho hình chóp \(S.ABCD\). Gọi \(M\), \(N\) l (ảnh 2)

Mặt khác  nên \(\frac{{EI}}{{EQ}} = \frac{{EA}}{{EC}} = \frac{{EA}}{{xEA}} = \frac{1}{x}\) suy ra \(EQ = x.EI\).

\( \Rightarrow \frac{{IE}}{{IQ}} = \frac{{IE}}{{IE + EQ}} = \frac{{IE}}{{IE + x.IE}} = \frac{1}{{1 + x}}\) (2)

Từ (1) và (2) \( \Rightarrow \frac{1}{{1 + x}} = \frac{1}{3}\) \( \Leftrightarrow x = 2\).

Vậy \(GE\,{\rm{//}}\,\left( {SBC} \right)\) \( \Leftrightarrow x = 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ