Câu hỏi:

05/11/2025 42 Lưu

Cho cấp số cộng \(\left( {{u_n}} \right)\) biết \({u_1} = \frac{1}{3},{u_8} = 26\). Công sai \(d\) của cấp số cộng đó là

A. \(\frac{{11}}{3}\).                    
B. \(\frac{{10}}{3}\).
C. \(\frac{3}{{10}}\).     
D. \(\frac{3}{{11}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
\({u_8} = {u_1} + \left( {8 - 1} \right) \cdot d \Rightarrow 26 = \frac{1}{3} + 7d \Rightarrow d = \frac{{11}}{3}\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Ta có: \({S_1} = {1^2} - \frac{3}{2} \cdot 1 = - \frac{1}{2};{S_2} = {2^2} - \frac{3}{2} \cdot 2 = 1\).

b) Sai.\({S_n}\) là tổng \(n\) số hạng đầu của dãy số nên ta có \({S_1} = {u_1} = - \frac{1}{2};{S_2} = {u_1} + {u_2} = 1\).

Do đó, \({u_2} = {S_2} - {u_1} = 1 - \left( { - \frac{1}{2}} \right) = \frac{3}{2}\).

c) Đúng. Với \(n \ge 2\) thì \({u_n} = {S_n} - {S_{n - 1}} = - \frac{5}{2} + 2n\).

\({u_1} = - \frac{1}{2} = - \frac{5}{2} + 2 \cdot 1\) nên \({u_n} = - \frac{5}{2} + 2n\) với \(n \in {\mathbb{N}^*}\).

d) Đúng. Ta có \({u_n} - {u_{n - 1}} = - \frac{5}{2} + 2n - \left[ { - \frac{5}{2} + 2\left( {n - 1} \right)} \right] = 2\) với \(n \in {\mathbb{N}^*},n \ge 2\).

Vậy \(\left( {{u_n}} \right)\) là một cấp số cộng có công sai là \(2\).

Lời giải

Ta có \({u_6} = - 64 \Leftrightarrow {u_1}{q^5} = - 64 \Leftrightarrow q = - 2 \Rightarrow {u_5} = {u_1}{q^4} = 2 \cdot {\left( { - 2} \right)^4} = 32\). Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP