Bạn An là sinh viên của một trường đại học, muốn vay tiền ngân hàng với lãi suất ưu đãi để trang trải kinh phí học tập. Đầu năm thứ nhất, bạn ấy vay ngân hàng số tiền 40 triệu đồng với lãi suất là \(4\% \) một năm. Tính số tiền mà bạn An nợ ngân hàng sau 4 năm, biết rằng trong 4 năm đó bạn An chưa trả bất kì khoản nào và lãi suất ngân hàng không thay đổi (làm tròn kết quả đến hàng phần chục theo đơn vị triệu đồng)
Bạn An là sinh viên của một trường đại học, muốn vay tiền ngân hàng với lãi suất ưu đãi để trang trải kinh phí học tập. Đầu năm thứ nhất, bạn ấy vay ngân hàng số tiền 40 triệu đồng với lãi suất là \(4\% \) một năm. Tính số tiền mà bạn An nợ ngân hàng sau 4 năm, biết rằng trong 4 năm đó bạn An chưa trả bất kì khoản nào và lãi suất ngân hàng không thay đổi (làm tròn kết quả đến hàng phần chục theo đơn vị triệu đồng)
Câu hỏi trong đề: Đề ôn luyện Toán Chương 3. Cấp số cộng và cấp số nhân !!
Quảng cáo
Trả lời:
Gọi \({u_n}\) là số tiền bạn An nợ ngân hàng sau \(n\) năm.
Ta có \({u_n} = {u_{n - 1}} + {u_{n - 1}} \cdot 0,04 = {u_{n - 1}} \cdot 1,04\,\,\,\left( {\forall n \ge 2} \right)\).
Ta có dãy số \(\left( {{u_n}} \right)\) lập thành một cấp số nhân với số hạng đầu \({u_1} = 40 + 40 \cdot 0,04 = 41,6\) (triệu đồng) và công bội \(q = 1,04\).
Vậy số tiền bạn An nợ ngân hàng sau 4 năm là:
\({u_4} = {u_1} \cdot {q^3} = 41,6 \cdot 1,{04^3} = 46,8\) (triệu đồng).
Đáp án: 46,8.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Ta có: \({S_1} = {1^2} - \frac{3}{2} \cdot 1 = - \frac{1}{2};{S_2} = {2^2} - \frac{3}{2} \cdot 2 = 1\).
b) Sai. Vì \({S_n}\) là tổng \(n\) số hạng đầu của dãy số nên ta có \({S_1} = {u_1} = - \frac{1}{2};{S_2} = {u_1} + {u_2} = 1\).
Do đó, \({u_2} = {S_2} - {u_1} = 1 - \left( { - \frac{1}{2}} \right) = \frac{3}{2}\).
c) Đúng. Với \(n \ge 2\) thì \({u_n} = {S_n} - {S_{n - 1}} = - \frac{5}{2} + 2n\).
Mà \({u_1} = - \frac{1}{2} = - \frac{5}{2} + 2 \cdot 1\) nên \({u_n} = - \frac{5}{2} + 2n\) với \(n \in {\mathbb{N}^*}\).
d) Đúng. Ta có \({u_n} - {u_{n - 1}} = - \frac{5}{2} + 2n - \left[ { - \frac{5}{2} + 2\left( {n - 1} \right)} \right] = 2\) với \(n \in {\mathbb{N}^*},n \ge 2\).
Vậy \(\left( {{u_n}} \right)\) là một cấp số cộng có công sai là \(2\).
Câu 2
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

