Câu hỏi:

05/11/2025 81 Lưu

Bạn An là sinh viên của một trường đại học, muốn vay tiền ngân hàng với lãi suất ưu đãi để trang trải kinh phí học tập. Đầu năm thứ nhất, bạn ấy vay ngân hàng số tiền 40 triệu đồng với lãi suất là \(4\% \) một năm. Tính số tiền mà bạn An nợ ngân hàng sau 4 năm, biết rằng trong 4 năm đó bạn An chưa trả bất kì khoản nào và lãi suất ngân hàng không thay đổi (làm tròn kết quả đến hàng phần chục theo đơn vị triệu đồng)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \({u_n}\) là số tiền bạn An nợ ngân hàng sau \(n\) năm.

Ta có \({u_n} = {u_{n - 1}} + {u_{n - 1}} \cdot 0,04 = {u_{n - 1}} \cdot 1,04\,\,\,\left( {\forall n \ge 2} \right)\).

Ta có dãy số \(\left( {{u_n}} \right)\) lập thành một cấp số nhân với số hạng đầu \({u_1} = 40 + 40 \cdot 0,04 = 41,6\) (triệu đồng) và công bội \(q = 1,04\).

Vậy số tiền bạn An nợ ngân hàng sau 4 năm là:

\({u_4} = {u_1} \cdot {q^3} = 41,6 \cdot 1,{04^3} = 46,8\) (triệu đồng).

Đáp án: 46,8.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Ta có: \({S_1} = {1^2} - \frac{3}{2} \cdot 1 = - \frac{1}{2};{S_2} = {2^2} - \frac{3}{2} \cdot 2 = 1\).

b) Sai.\({S_n}\) là tổng \(n\) số hạng đầu của dãy số nên ta có \({S_1} = {u_1} = - \frac{1}{2};{S_2} = {u_1} + {u_2} = 1\).

Do đó, \({u_2} = {S_2} - {u_1} = 1 - \left( { - \frac{1}{2}} \right) = \frac{3}{2}\).

c) Đúng. Với \(n \ge 2\) thì \({u_n} = {S_n} - {S_{n - 1}} = - \frac{5}{2} + 2n\).

\({u_1} = - \frac{1}{2} = - \frac{5}{2} + 2 \cdot 1\) nên \({u_n} = - \frac{5}{2} + 2n\) với \(n \in {\mathbb{N}^*}\).

d) Đúng. Ta có \({u_n} - {u_{n - 1}} = - \frac{5}{2} + 2n - \left[ { - \frac{5}{2} + 2\left( {n - 1} \right)} \right] = 2\) với \(n \in {\mathbb{N}^*},n \ge 2\).

Vậy \(\left( {{u_n}} \right)\) là một cấp số cộng có công sai là \(2\).

Lời giải

Ta có \({u_6} = - 64 \Leftrightarrow {u_1}{q^5} = - 64 \Leftrightarrow q = - 2 \Rightarrow {u_5} = {u_1}{q^4} = 2 \cdot {\left( { - 2} \right)^4} = 32\). Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 9.                  
B. 3.                       
C. 7.                         
D. 6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP