Câu hỏi:

05/11/2025 101 Lưu

Một người làm việc cho một công ty. Theo hợp đồng trong năm đầu tiên, tháng lương thứ nhất là 6 triệu đồng và lương tháng sau cao hơn tháng trước là 200 nghìn đồng. Hỏi theo hợp đồng, tháng thứ 7 người đó nhận được lương là bao nhiêu triệu đồng?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi lương tháng thứ \(n\) của người đó là \({A_n}\). Ta có\({A_1} = 6\).

Lương tháng sau hơn tháng trước \(0,2\) triệu đồng nên ta có \(\left\{ {{A_n}} \right\}\) là một cấp số cộng với số hạng đầu \({A_1} = 6\) và công sai \(d = 0,2\).

Số hạng tổng quát của dãy số là \({A_n} = {A_1} + \left( {n - 1} \right)d\,\,\,\,\left( {n > 1} \right)\).

Vậy tới tháng thứ 7, người đó nhận được lương là \({A_7} = {A_1} + 6d = 6 + 6 \cdot 0,2 = 7,2\) (triệu đồng).

Đáp án: 7,2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Ta có: \({S_1} = {1^2} - \frac{3}{2} \cdot 1 = - \frac{1}{2};{S_2} = {2^2} - \frac{3}{2} \cdot 2 = 1\).

b) Sai.\({S_n}\) là tổng \(n\) số hạng đầu của dãy số nên ta có \({S_1} = {u_1} = - \frac{1}{2};{S_2} = {u_1} + {u_2} = 1\).

Do đó, \({u_2} = {S_2} - {u_1} = 1 - \left( { - \frac{1}{2}} \right) = \frac{3}{2}\).

c) Đúng. Với \(n \ge 2\) thì \({u_n} = {S_n} - {S_{n - 1}} = - \frac{5}{2} + 2n\).

\({u_1} = - \frac{1}{2} = - \frac{5}{2} + 2 \cdot 1\) nên \({u_n} = - \frac{5}{2} + 2n\) với \(n \in {\mathbb{N}^*}\).

d) Đúng. Ta có \({u_n} - {u_{n - 1}} = - \frac{5}{2} + 2n - \left[ { - \frac{5}{2} + 2\left( {n - 1} \right)} \right] = 2\) với \(n \in {\mathbb{N}^*},n \ge 2\).

Vậy \(\left( {{u_n}} \right)\) là một cấp số cộng có công sai là \(2\).

Lời giải

Ta có \({u_6} = - 64 \Leftrightarrow {u_1}{q^5} = - 64 \Leftrightarrow q = - 2 \Rightarrow {u_5} = {u_1}{q^4} = 2 \cdot {\left( { - 2} \right)^4} = 32\). Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 9.                  
B. 3.                       
C. 7.                         
D. 6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP