Nếu một người gửi số tiền \(A\) với lãi suất kép \(r\) mỗi kì thì sau \(n\) kì, số tiền \(T\) người ấy thu được cả vốn lẫn lãi được cho bởi công thức \({T_n} = A{\left( {1 + r} \right)^n}\).
Một người gửi tiết kiệm 10 tỉ đồng theo thể thức lãi kép kì hạn 12 tháng với lãi suất \(7\% \) một năm và lãi hằng năm được nhập vào vốn. Sau ít nhất bao nhiêu năm người đó nhận được số tiền nhiều hơn 12 tỉ đồng?
Quảng cáo
Trả lời:
Theo công thức lãi kép: \({T_n} = A{\left( {1 + r} \right)^n}\), số tiền người đó nhận được sau \(n\) năm là:
\({T_n} = 10 \cdot {10^9}{\left( {1 + 7\% } \right)^n} = {10^{10}} \cdot 1,{07^n}\) (đồng).
Để nhận được số tiền nhiều hơn 12 tỉ đồng thì
\({T_n} = {10^{10}} \cdot 1,{07^n} > 12 \cdot {10^9} \Leftrightarrow 1,{07^n} > \frac{6}{5} \Leftrightarrow n > {\log _{1,07}}\left( {\frac{6}{5}} \right) \approx 2,695.\)
Vì ngân hàng chỉ tính lãi khi đến kì hạn nên sau ít nhất 3 năm người đó nhận được số tiền nhiều hơn 12 tỉ đồng.
Đáp án: 3.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Câu 2
Lời giải
Ta có
Chọn B.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.