Trong không gian Oxyz, cho các vectơ \(\vec a = \left( {1; - 1;2} \right),\vec b = \left( {2;1; - 3} \right),\vec c = \left( {0;3; - 2} \right)\). Điểm \(M\left( {x;y;z} \right)\) thỏa mãn \(\overrightarrow {OM} + \vec a = 2\vec b - \vec c\), tổng \(x + y + z\) bằng
Trong không gian Oxyz, cho các vectơ \(\vec a = \left( {1; - 1;2} \right),\vec b = \left( {2;1; - 3} \right),\vec c = \left( {0;3; - 2} \right)\). Điểm \(M\left( {x;y;z} \right)\) thỏa mãn \(\overrightarrow {OM} + \vec a = 2\vec b - \vec c\), tổng \(x + y + z\) bằng
Quảng cáo
Trả lời:
Ta có \(\overrightarrow {OM} + \vec a = 2\vec b - \vec c \Rightarrow \overrightarrow {OM} = 2\vec b - \vec c - \vec a\). Khi đó \(M\left( {3;0; - 6} \right)\).
Vậy \(x + y + z = 3 + 0 - 6 = - 3\). Chọn B.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bài toán này ta sẽ giải quyết bằng cách ứng dụng phương pháp tọa độ trong không gian.
Đặt hệ trục tọa độ như hình vẽ. Không mất tính tổng quát, và dựa vào yêu cầu về vị trí 3 con nhện ta xác định là các điểm \(M,N,P\) nằm trên các cạnh \[A'B',CC',AD\] như hình vẽ.

Yêu cầu bài toán là cần tìm tọa độ của 3 điểm \(M,N,P\) để chu vi tam giác \(MNP\) nhỏ nhất.
Đặt \[M\left( {x;5;0} \right),P\left( {0;0;z} \right),N\left( {5;y;5} \right)\]. Chu vi tam giác \[MNP\] là:
\[\begin{array}{l}MN + NP + PM = \sqrt {{{\left( {x - 5} \right)}^2} + {{\left( {y - 5} \right)}^2} + {5^2}} + \sqrt {{5^2} + {y^2} + {{\left( {z - 5} \right)}^2}} + \sqrt {{x^2} + {5^2} + {z^2}} \\ = \sqrt {{{\left( {5 - x} \right)}^2} + {{\left( {y - 5} \right)}^2} + {5^2}} + \sqrt {{y^2} + {{\left( {z - 5} \right)}^2} + {5^2}} + \sqrt {{z^2} + {{\left( { - x} \right)}^2} + {5^2}} .\end{array}\]
Áp dụng bất đẳng thức vectơ:
\[\begin{array}{l} \Rightarrow MN + NP + PM \ge \sqrt {{{\left( {5 - x + y} \right)}^2} + {{\left( {y + z - 10} \right)}^2} + {{10}^2}} + \sqrt {{z^2} + {{\left( { - x} \right)}^2} + {5^2}} \\ \ge \sqrt {{{\left( {5 - x + y + z} \right)}^2} + {{\left( {y - 5 + z - 5 - x} \right)}^2} + {{\left( {5 + 5 + 5} \right)}^2}} \\ = \sqrt {2{{\left( {y + z - x - \frac{5}{2}} \right)}^2} + \frac{{225}}{2} + {{\left( {5 + 5 + 5} \right)}^2}} \ge 15\sqrt {\frac{3}{2}} = 15\frac{{\sqrt 6 }}{2}.\end{array}\]
Dấu bằng xảy ra khi \[\left\{ \begin{array}{l}y + z - x = \frac{5}{2}\\\frac{{5 - x}}{y} = \frac{{y - 5}}{{z - 5}} = \frac{5}{5}\\\frac{{5 - x + y}}{z} = \frac{{y + z - 10}}{{ - x}} = \frac{{10}}{5}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = z\\2y - x = \frac{5}{2}\\x + y = 5\end{array} \right. \Leftrightarrow x = y = z = \frac{5}{2}\].
Vậy giá trị cần tìm là \[\frac{{15}}{2}\sqrt 6 \] \( \Rightarrow {m^2} + {n^2} + {p^2} = 265.\)
Đáp án: 265.
Lời giải

a) Sai. Ba vectơ \(\overrightarrow {SA} ,\overrightarrow {SB} ,\overrightarrow {SC} \) không đồng phẳng.
b) Đúng. Ta có \(\overrightarrow {{F_1}} \cdot \overrightarrow {{F_2}} = \left| {\overrightarrow {{F_1}} } \right| \cdot \left| {{{\vec F}_2}} \right| \cdot {\rm{cos}}\left( {{{\vec F}_1},\overrightarrow {{F_2}} } \right)\).
c) Sai. Trọng lực \(P = 4,6 \cdot 9,8 = 45,08\,\left( {\rm{N}} \right)\).
d) Sai. Gọi \(O\) là tâm của đáy. Khi đó \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \vec 0\).
Ta có \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = \overrightarrow {SO} + \overrightarrow {OA} + \overrightarrow {SO} + \overrightarrow {OB} + \overrightarrow {SO} + \overrightarrow {OC} = 3\overrightarrow {SO} \).
\( \Rightarrow \left| {\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} \left| = \right|3\overrightarrow {SO} } \right| = 3SO\).
Mặt khác \(3SO = \left| {\vec P} \right| = 45,08 \Rightarrow SO = \frac{{1127}}{{75}}\).
Gọi \(H\) là trung điểm của AB. Đặt \(AB = x\,\,\left( {x > 0} \right)\).
Khi đó \(SH = \frac{{AB\sqrt 3 }}{2} = \frac{{x\sqrt 3 }}{2}\).
Ta có \(CH = \frac{{AB\sqrt 3 }}{2} = \frac{{x\sqrt 3 }}{2} \Rightarrow OH = \frac{{x\sqrt 3 }}{6}\).
Tam giác SOH vuông tại \(O\) nên \(S{H^2} = S{O^2} + O{H^2} \Rightarrow \frac{{3{x^2}}}{4} = {\left( {\frac{{1127}}{{75}}} \right)^2} + \frac{{{x^2}}}{{12}} \Rightarrow x = \frac{{1127\sqrt 6 }}{{150}}\).
Do đó \(SA = \frac{{1127\sqrt 6 }}{{150}} \approx 18,4\). Suy ra \(\left| {\overrightarrow {{F_1}} } \right| \approx 18,4\,{\rm{(N)}}\).
Vậy độ lớn của các lực \(\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2}} ,\,\,\overrightarrow {{F_3}} \) bằng \(18,4\,{\rm{N}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



