Câu hỏi:

06/11/2025 355 Lưu

Một phòng học có thiết kế dạng hình hộp chữ nhật \(ABCD.A'B'C'D'\) với \[AB = 6{\rm{\;m}}\]; \[AD = 7{\rm{\;m}}\]; \(AA' = 3,5{\rm{\;m}}\). Một bóng đèn được treo ở vị trí chính giữa trần nhà của phòng học và cách trần nhà \(0,5{\rm{\;m}}\). Chọn hệ trục tọa độ Oxyz sao cho gốc \(O\) trùng với điểm \(A\), các điểm \(B,D,A'\) lần lượt nằm trên các tia \(Ox,Oy,Oz\).

Media VietJack

a) Điểm \(D\) có toạ độ là \(\left( {0;7;0} \right)\).

b) Các điểm \(C,D\) có tung độ bằng nhau.

c) Vectơ \(\overrightarrow {C'D'} \) có tọa độ \(\left( {6;0;0} \right)\).

d) Bóng đèn nằm tại vị trí có tọa độ \(\left( {3;3,5;3,5} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Có điểm A trùng với gốc tọa độ \(O,D \in Oy \Rightarrow D\left( {0;{y_D};0} \right)\).

\(AD = 7\), suy ra \({y_D} = 7\) hay \(D\left( {0;7;0} \right)\).

b) Đúng. Các điểm \(C,D\) có tung độ bằng nhau và bằng 7.

c) Sai. Ta có tọa độ điểm \(D'\left( {0;7;3,5} \right)\) và điểm \(C'\left( {6;7;3,5} \right)\). Suy ra vectơ \(\overline {C'D'} \left( { - 6;0;0} \right)\).

d) Sai. Ta có điểm \(A'\left( {0;0;3,5} \right)\) và điểm \(C'\left( {6;7;3,5} \right)\).

Tọa độ trung điểm của \(A'{\rm{C'}}\)\(\left( {\frac{{6 + 0}}{2};\frac{{7 + 0}}{2};\frac{{3,5 + 3,5}}{2}} \right) = \left( {3;3,5;3,5} \right)\).

Mà bóng đèn được treo cách trần nhà \(0,5{\rm{\;m}}\).

Vậy bóng đèn nằm tại vị trí có toạ độ \(\left( {3;3,5;3} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Radar đặt trên đỉnh tháp, trục \(Oz\) hướng thẳng đứng lên phía trên, suy ra tọa độ của đỉnh tháp \(E\left( {0\,;0\,;\,0,1} \right)\).

b) Đúng. Tọa độ điểm \(F\left( {400; - 300;12} \right)\).

\[\overrightarrow {EF} = \left( {400; - 300;11,9} \right) \Rightarrow EF \approx 500,14 < 600\,\,\left( {{\rm{km}}} \right)\].

Vậy \(F\) nằm trong phạm vi điều khiển của radar.

c) Sai. Từ \(F\), máy bay bay 1 giờ đến \(A\) với vận tốc \(900\,{\rm{km/h}}\) theo phương \(\overrightarrow a = \left( {3;4;0} \right)\).

Suy ra \[\left\{ \begin{array}{l}\overrightarrow {FA} = k\overrightarrow a \\\left| {\overrightarrow {FA} } \right| = 900\end{array} \right. \Rightarrow k\left| {\overrightarrow a } \right| = 900 \Rightarrow k = \frac{{900}}{{\sqrt {{3^2} + {4^2}} }} = 180.\]

Suy ra \(\overrightarrow {FA} = \left( {540;720;0} \right) \Rightarrow A\left( {940;420;12} \right).\)

d) Sai. Gọi \(K\left( {x;y;z} \right)\) là điểm máy bay đạt đến phạm vi quan sát của radar, suy ra \(EK = 600\).

Khi đó \(\overrightarrow {FK} = k\overrightarrow a \left( {k > 0} \right) \Leftrightarrow \left\{ \begin{array}{l}x - 400 = 3k\\y + 300 = 4k\\z - 12 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 400 + 3k\\y = - 300 + 4k\\z = 12\end{array} \right. \Rightarrow K\left( {400 + 3k; - 300 + 4k;12} \right)\).

Suy ra \(\overrightarrow {EK} = \left( {400 + 3k; - 300 + 4k;11,9} \right)\), mà \(EK = 600.\)

Nên \({\left( {400 + 3k} \right)^2} + {\left( { - 300 + 4k} \right)^2} + 11,{9^2} = {600^2} \Leftrightarrow 25{k^2} = 109858,39 \Leftrightarrow k \approx 66.\)

Khi đó \(K\left( {598; - 36;12} \right) \Rightarrow \overrightarrow {FK} = \left( {198;264;0} \right) \Rightarrow FK = 330\).

Thời gian máy bay trong phạm vi theo dõi của radar là \(t = \frac{{330 \cdot 60}}{{900}} = 22\) phút.

Câu 2

A. \(M'\left( { - 1;0;0} \right)\).                   
B. \(M'\left( {1;0;0} \right)\).    
C. \(M'\left( {1;0;\sqrt 3 } \right)\).                        
D. \(M'\left( {1; - \sqrt 2 ;0} \right)\).

Lời giải

\(MM'\) ngắn nhất khi điểm \(M'\) là hình chiếu điểm \(M\) trên trục Ox \( \Rightarrow M'\left( {1;0;0} \right)\). Chọn B.