Câu hỏi:

06/11/2025 16 Lưu

Một công ty logistics đang thử nghiệm hệ thống giao hàng tự động bằng máy bay không người lái (drone). Trong không gian \[Oxyz\], mỗi đơn vị trên các trục tương ứng với 1 mét trên thực tế, mặt ngoài của một tòa nhà cao tầng được xem là một phần của mặt phẳng \[\left( P \right)\] thẳng đứng, đi qua hai điểm \(C\left( {10;50;0} \right)\)\(D\left( {30;10;0} \right)\) trên mặt đất (mặt phẳng \(\left( {Oxy} \right)\)) như hình vẽ. Vị trí giao hàng là điểm B nằm trên mặt phẳng \[\left( P \right)\]. Drone bắt đầu bay từ kho hàng tại gốc tọa độ \(O\left( {0;0;0} \right)\). Ban đầu, nó bay theo một đường thẳng đến vị trí \(A\left( {30;40;120} \right).\) Từ vị trí \[A\], drone thay đổi đường bay, di chuyển theo phương vuông góc với mặt phẳng \[\left( P \right)\] đến vị trí giao hàng \[B\]. Khoảng cách từ \(O\) đến \(B\) bằng bao nhiêu mét (làm tròn kết quả đến hàng đơn vị)?

Media VietJack

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \[\overrightarrow {CD} = \left( {20; - 40;0} \right) = 20\overrightarrow u \] với \[\overrightarrow u = \left( {1; - 2;0} \right)\].

\[\left( P \right)\] là mặt phẳng thẳng đứng qua \[C\]\[D\] nên nhận vectơ \[\overrightarrow u = \left( {1; - 2;0} \right)\]\[\overrightarrow k = \left( {0;0;1} \right)\] làm cặp vectơ chỉ phương nên vectơ pháp tuyến của \[\left( P \right)\]\[\overrightarrow n = \left[ {\overrightarrow k ,\overrightarrow u } \right] = \left( {2;1;0} \right)\].

Ta có \[\left( P \right):2\left( {x - 10} \right) + 1\left( {y - 50} \right) + 0\left( {z - 0} \right) = 0 \Leftrightarrow 2x + y - 70 = 0\].

Đường thẳng \[AB\] vuông góc với \[\left( P \right)\] nên nhận vectơ pháp tuyến của \[\left( P \right)\] làm vectơ chỉ phương \[\overrightarrow {{u_{AB}}} = \left( {2;1;0} \right)\]. Phương trình đường thẳng \[AB\]: \[\left\{ \begin{array}{l}x = 30 + 2t\\y = 40 + t\\z = 120\end{array} \right.\].

\[B\] là giao điểm của đường thẳng \[AB\] và mặt phẳng \[\left( P \right)\] nên ta có

\[2\left( {30 + 2t} \right) + 40 + t - 70 = 0 \Leftrightarrow 5t = - 30 \Leftrightarrow t = - 6\]

\[ \Rightarrow B\left( {18;34;120} \right) \Rightarrow OB = \sqrt {{{18}^2} + {{34}^2} + {{120}^2}} \approx 126\,\,\left( {\rm{m}} \right)\].

Đán án: 126.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chúng ta cần tìm vị trí tối ưu của tàu du lịch \(B\) (tương ứng với điểm \(B\)) và tàu chở hàng \(C\) (tương ứng với điểm \(C\)) sao cho tổng quãng đường cứu hộ \(T = AB + BC + CA\) là nhỏ nhất.

Trong không gian \(Oxyz\), ta có:

Hai đường thẳng \({d_1},\,{d_2}\) cùng nằm trong mặt phẳng \(\left( \alpha \right):\,z = 0\)\(A \in \left( \alpha \right)\).

\({d_1}\) có một vectơ chỉ phương \({\vec u_1} = \left( {1;\, - 2;\,0} \right)\); \({d_2}\) có một vectơ chỉ phương \({\vec u_2} = \left( { - 1;\,1;\,0} \right)\).

Do \(\left[ {{{\vec u}_1},\,{{\vec u}_2}} \right] \ne \vec 0\) nên \({d_1}\) cắt \({d_2}\).

Gọi \({A_1},\,{A_2}\) lần lượt là điểm đối xứng của \(A\) qua \({d_1}\)\({d_2}\).

Gọi \(\left( P \right)\) là mặt phẳng qua \(A\) và vuông góc với \({d_1}\)\( \Rightarrow \,\,\left( P \right):x - 2y - 5 = 0\).

Gọi \(I = \left( P \right) \cap {d_1}\), thì tọa độ của \(I\) là nghiệm của hệ \[{d_1}:\,\left\{ \begin{array}{l}x = 2 + t\\y = 1 - 2t\\z = 0\\x - 2y - 5 = 0\end{array} \right.\]\( \Rightarrow I\left( {3;\, - 1;\,0} \right)\)

\( \Rightarrow {A_1}\left( {1;\, - 2;\,0} \right)\).

Gọi \(\left( Q \right)\) là mặt phẳng qua \(A\) và vuông góc với \({d_2}\)\( \Rightarrow \,\left( Q \right): - x + y + 5 = 0\).

Gọi \(J = \left( Q \right) \cap {d_2}\), thì tọa độ của \(J\) là nghiệm của hệ \(\left\{ \begin{array}{l}x = 2 - s\\y = 11 + s\\z = 0\\ - x + y + 5 = 0\end{array} \right.\)\( \Rightarrow J\left( {9;\,4;\,0} \right)\)

\( \Rightarrow {A_2}\left( {13;\,8;\,0} \right)\).

Khi đó \(T = AB + BC + CA = {A_1}B + BC + C{A_2} \ge {A_1}{A_2}\).

Dấu bằng xảy ra khi \(B,\,C,\,{A_1},\,{A_2}\) thẳng hàng.

Vậy \(T\) đạt GTNN khi \(T = {A_1}{A_2}\)\( \Rightarrow {T_{\min }} = {A_1}{A_2} = \sqrt {244} \,\,\,\left( {{\rm{km}}} \right)\).

Suy ra \(a = 244\). Vậy \(a + 2026 = 2270\).

Đáp án: 2270.

Lời giải

Dựa vào đề bài ta có thể thấy góc tạo bởi đường bay của máy bay cất cánh và sân bay chính là góc giữa \(OA\) và mặt phẳng \(\left( {Oxy} \right)\).

Ta có \[\overrightarrow {OA} = \left( {2;5;\,1,2} \right)\] và vectơ pháp tuyến của mặt phẳng \[\left( {Oxy} \right)\]\(\overrightarrow n = \overrightarrow k = \left( {0;0;1} \right)\).

Gọi \(\alpha \) là góc tạo bởi \(OA\) và mặt phẳng \(\left( {Oxy} \right)\).

Khi đó, \(\sin \alpha = \frac{{\left| {1,2 \cdot 1} \right|}}{{\sqrt {{2^2} + {5^2} + {{\left( {1,2} \right)}^2}} \cdot \sqrt {{1^2}} }} = \frac{{6\sqrt {761} }}{{761}}\). Suy ra \(\alpha \approx 13^\circ \).

Đáp án: 13.

Câu 5

 A. \(\left( {3; - 1;2} \right)\).                  
B. \(\left( {2; - 1;3} \right)\) .   .
C. \(\left( { - 1;2;3} \right)\).               
D. \(\left( {2;1;3} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\left\{ \begin{array}{l}x = 1 + t\\y = 1\\z = 1\end{array} \right.\left( {t \in \mathbb{R}} \right)\].                        
B. \[\left\{ \begin{array}{l}x = 1\\y = 1\\z = 1 + t\end{array} \right.\left( {t \in \mathbb{R}} \right)\].   
C. \[\left\{ \begin{array}{l}x = 1 + t\\y = 1\\z = 1\end{array} \right.\left( {t \in \mathbb{R}} \right)\].                  
D. \[\left\{ \begin{array}{l}x = 1 + t\\y = 1 + t\\z = 1\end{array} \right.\left( {t \in \mathbb{R}} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP