Câu hỏi:

06/11/2025 47 Lưu

Trạm tàu cứu hộ được đặt tại vị trí \(A\left( {5;\,0;\,0} \right)\) trên một hòn đảo nhỏ trong không gian \(Oxyz\) (đơn vị trên mỗi trục được tính bằng kilomet), được sử dụng làm trạm cứu hộ, cứu nạn trên biển. Tàu du lịch \(B\) đang di chuyển (vận tốc không đổi) trên tuyến đường được mô tả bởi đường thẳng \({d_1}:\,\left\{ \begin{array}{l}x = 2 + t\\y = 1 - 2t\\z = 0\end{array} \right.\). Tàu chở hàng \(C\) đang di chuyển (vận tốc không đổi) trên tuyến đường vận tải được mô tả bởi đường thẳng \({d_2}:\,\left\{ \begin{array}{l}x = 2 - s\\y = 11 + s\\z = 0\end{array} \right.\). Do thời tiết xấu, nên hai tàu \(B\)\(C\) gặp sự cố và cần được tiếp cận khẩn cấp. Trạm cứu hộ điều một tàu cứu hộ xuất phát từ \(A\) để lần lượt tiếp cận tàu du lịch \(B\) trước, sau đó đến tàu chở hàng \(C\). Xét vị trí tối ưu của tàu du lịch \(B\) dừng lại và tàu chở hàng \(C\) dừng lại sao cho tổng quãng đường tàu cứu hộ cần đi \(T = AB + BC + CA\) là nhỏ nhất. Khi đó \({T_{\min }} = \sqrt a \,\,\,\left( {{\rm{km}}} \right)\), hãy tính \(a + 2026\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chúng ta cần tìm vị trí tối ưu của tàu du lịch \(B\) (tương ứng với điểm \(B\)) và tàu chở hàng \(C\) (tương ứng với điểm \(C\)) sao cho tổng quãng đường cứu hộ \(T = AB + BC + CA\) là nhỏ nhất.

Trong không gian \(Oxyz\), ta có:

Hai đường thẳng \({d_1},\,{d_2}\) cùng nằm trong mặt phẳng \(\left( \alpha \right):\,z = 0\)\(A \in \left( \alpha \right)\).

\({d_1}\) có một vectơ chỉ phương \({\vec u_1} = \left( {1;\, - 2;\,0} \right)\); \({d_2}\) có một vectơ chỉ phương \({\vec u_2} = \left( { - 1;\,1;\,0} \right)\).

Do \(\left[ {{{\vec u}_1},\,{{\vec u}_2}} \right] \ne \vec 0\) nên \({d_1}\) cắt \({d_2}\).

Gọi \({A_1},\,{A_2}\) lần lượt là điểm đối xứng của \(A\) qua \({d_1}\)\({d_2}\).

Gọi \(\left( P \right)\) là mặt phẳng qua \(A\) và vuông góc với \({d_1}\)\( \Rightarrow \,\,\left( P \right):x - 2y - 5 = 0\).

Gọi \(I = \left( P \right) \cap {d_1}\), thì tọa độ của \(I\) là nghiệm của hệ \[{d_1}:\,\left\{ \begin{array}{l}x = 2 + t\\y = 1 - 2t\\z = 0\\x - 2y - 5 = 0\end{array} \right.\]\( \Rightarrow I\left( {3;\, - 1;\,0} \right)\)

\( \Rightarrow {A_1}\left( {1;\, - 2;\,0} \right)\).

Gọi \(\left( Q \right)\) là mặt phẳng qua \(A\) và vuông góc với \({d_2}\)\( \Rightarrow \,\left( Q \right): - x + y + 5 = 0\).

Gọi \(J = \left( Q \right) \cap {d_2}\), thì tọa độ của \(J\) là nghiệm của hệ \(\left\{ \begin{array}{l}x = 2 - s\\y = 11 + s\\z = 0\\ - x + y + 5 = 0\end{array} \right.\)\( \Rightarrow J\left( {9;\,4;\,0} \right)\)

\( \Rightarrow {A_2}\left( {13;\,8;\,0} \right)\).

Khi đó \(T = AB + BC + CA = {A_1}B + BC + C{A_2} \ge {A_1}{A_2}\).

Dấu bằng xảy ra khi \(B,\,C,\,{A_1},\,{A_2}\) thẳng hàng.

Vậy \(T\) đạt GTNN khi \(T = {A_1}{A_2}\)\( \Rightarrow {T_{\min }} = {A_1}{A_2} = \sqrt {244} \,\,\,\left( {{\rm{km}}} \right)\).

Suy ra \(a = 244\). Vậy \(a + 2026 = 2270\).

Đáp án: 2270.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Dựa vào đề bài ta có thể thấy góc tạo bởi đường bay của máy bay cất cánh và sân bay chính là góc giữa \(OA\) và mặt phẳng \(\left( {Oxy} \right)\).

Ta có \[\overrightarrow {OA} = \left( {2;5;\,1,2} \right)\] và vectơ pháp tuyến của mặt phẳng \[\left( {Oxy} \right)\]\(\overrightarrow n = \overrightarrow k = \left( {0;0;1} \right)\).

Gọi \(\alpha \) là góc tạo bởi \(OA\) và mặt phẳng \(\left( {Oxy} \right)\).

Khi đó, \(\sin \alpha = \frac{{\left| {1,2 \cdot 1} \right|}}{{\sqrt {{2^2} + {5^2} + {{\left( {1,2} \right)}^2}} \cdot \sqrt {{1^2}} }} = \frac{{6\sqrt {761} }}{{761}}\). Suy ra \(\alpha \approx 13^\circ \).

Đáp án: 13.

Lời giải

a) Đúng. Ta có \[ABCD\] là hình vuông nên \[BC = AB = 20\,{\rm{m}}\], do đó \(B\left( {20;20;0} \right)\).

\[DH = 4\,{\rm{m}}\] nên \(H\left( {0\,;0\,;4} \right)\).

b) Sai. \[AD = AB = 20\,{\rm{m}}\] \[AE = 3\,{\rm{m}}\] nên \(E\left( {20\,;0\,;3} \right)\), suy ra \(\overrightarrow {HE} = \left( {20\,;0\,; - 1} \right)\) là vectơ chỉ phương của đường thẳng \(EH\).

Khi đó, đường thẳng \(EH\) có phương trình tham số là \(\left\{ \begin{array}{l}x = 20t\\y = 0\\z = 4 - t\end{array} \right.,\,\left( {t \in \mathbb{R}} \right)\).

c) Đúng. Ta có \(F\left( {20\,;20\,;3} \right)\)\(\overrightarrow {EF} = \left( {0\,;20\,;0} \right)\).

\(\left[ {\overrightarrow {EF} ;\overrightarrow {HE} } \right] = \left( { - 20;0; - 400} \right)\) là một vectơ pháp tuyến của mặt phẳng \[\left( {EFGH} \right)\].

Mặt phẳng \[\left( {ABCD} \right)\]vectơ pháp tuyến là \[\overrightarrow k = \left( {0\,;0\,;1} \right)\]. Khi đó:

\[\cos \left( {\left( {ABCD} \right),\left( {EFGH} \right)} \right) = \frac{{\left| {400} \right|}}{{\sqrt {{{20}^2} + {{400}^2}} }} = \frac{{400}}{{20\sqrt {401} }} = \frac{{20}}{{\sqrt {401} }} \Rightarrow \left( {\left( {ABCD} \right),\left( {EFGH} \right)} \right) \approx 2,86^\circ \].

Vậy mái nhà hợp với mặt đất một góc khoảng \(2,86^\circ \).

d) Đúng.

Media VietJack

Gọi \(I\) là tâm hình vuông \[ABCD\]\(MA = MB = MC = MD = 2\sqrt {66} \,{\rm{m}}\).

Suy ra \[M.ABCD\] là hình chóp đều nên \[MI \bot \left( {ABCD} \right)\].

Ta có \[DB = 20\sqrt 2 \left( {\rm{m}} \right) \Rightarrow ID = 10\sqrt 2 \left( {\rm{m}} \right)\].

Xét tam giác \[MID\]vuông tại \(I\): \(MI = \sqrt {M{D^2} - I{D^2}} = \sqrt {{{\left( {2\sqrt {66} } \right)}^2} - {{\left( {10\sqrt 2 } \right)}^2}} = 8\,\left( {\rm{m}} \right)\).

\[MI{\rm{//}}DL,\,MI = DL = 8\,{\rm{m}}\].

Do đó \[DIML\] là hình bình hành nên \[ML = ID = 10\sqrt 2 \,{\rm{m}}\].

Câu 5

 A. \(\left( {3; - 1;2} \right)\).                  
B. \(\left( {2; - 1;3} \right)\) .   .
C. \(\left( { - 1;2;3} \right)\).               
D. \(\left( {2;1;3} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\left\{ \begin{array}{l}x = 1 + t\\y = 1\\z = 1\end{array} \right.\left( {t \in \mathbb{R}} \right)\].                        
B. \[\left\{ \begin{array}{l}x = 1\\y = 1\\z = 1 + t\end{array} \right.\left( {t \in \mathbb{R}} \right)\].   
C. \[\left\{ \begin{array}{l}x = 1 + t\\y = 1\\z = 1\end{array} \right.\left( {t \in \mathbb{R}} \right)\].                  
D. \[\left\{ \begin{array}{l}x = 1 + t\\y = 1 + t\\z = 1\end{array} \right.\left( {t \in \mathbb{R}} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP