Câu hỏi:

06/11/2025 8 Lưu

Hệ thống định vị vệ tinh toàn cầu Beidou (Bắc Đẩu) hiện tại có 35 vệ tinh, mỗi vệ tinh cách Trái Đất khoảng 35 000 km, ta coi Trái Đất là khối cầu có bán kính \(R = 6,4\) (nghìn km). Với hệ tọa độ \(Oxyz\) đã chọn, \(O\) là tâm Trái Đất và đơn vị trên mỗi trục là nghìn km, hai vệ tinh có tọa độ \(A\left( {30;0;0} \right),B\left( {0;30;0} \right)\). Xét điểm \(M\left( {x;y;z} \right)\) thuộc bề mặt Trái Đất. Đặt \(T\) là tổng khoảng cách từ \(M\) đến hai vệ tinh \(A\) \(B\). Tìm giá trị nhỏ nhất của \(T\) theo đơn vị nghìn km (làm tròn kết quả đến hàng phần chục).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

Mặt cầu \(\left( S \right)\) có tâm \(O\left( {0;0;0} \right)\) và bán kính \(R = 6,4\) có phương trình \({x^2} + {y^2} + {z^2} = 40,96\).

Ta có \(OA = 30;OB = 30;AB = 30\sqrt 2 \). Suy ra \(\Delta OAB\) cân tại \(O\).

Gọi \(H\) là trung điểm của \(AB\), khi đó \(H\left( {15;15;0} \right)\), ta có \(OH \bot AB\).

Đường thẳng \(OH\) đi qua \(O\left( {0;0;0} \right)\) và có VTCP \(\overrightarrow {OH} = \left( {15;15;0} \right) = 15\left( {1;1;0} \right)\) là: \(\left\{ \begin{array}{l}x = t\\y = t\\z = 0\end{array} \right.\).

Để \(M \in \left( {OAB} \right)\) thỏa mãn \(MA + MB\) nhỏ nhất thì \(M,A,B\) phải đồng phẳng và \(MA = MB\).

\(MH\) nhỏ nhất. Khi đó \(M\) là giao điểm của \(OH\) và mặt cầu \(\left( S \right)\).

Tọa độ \(M\) thỏa mãn phương trình: \({t^2} + {t^2} + {0^2} = 40,96 \Leftrightarrow 2{t^2} = 40,96 \Leftrightarrow t = \pm \frac{{16\sqrt 2 }}{5}\).

Suy ra \[\left[ \begin{array}{l}{M_1}\left( {\frac{{16\sqrt 2 }}{5};\frac{{16\sqrt 2 }}{5};0} \right) \Rightarrow {M_1}H \approx 14,81\\{M_2}\left( {\frac{{ - 16\sqrt 2 }}{5};\frac{{ - 16\sqrt 2 }}{5};0} \right) \Rightarrow {M_2}H \approx 27,61.\end{array} \right.\]

Vậy điểm cần tìm là: \[M\left( {\frac{{16\sqrt 2 }}{5};\frac{{16\sqrt 2 }}{5};0} \right)\] .

Khi đó, \(T = MA + MB = 2MA = 2\sqrt {{{\left( {\frac{{16\sqrt 2 }}{5} - 30} \right)}^2} + {{\left( {\frac{{16\sqrt 2 }}{5} - 0} \right)}^2} + {0^2}} \approx 51,7\).

Đáp án: 51,7.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \[M = AB \cap CD\] (là điểm hai viên đạn va chạm nhau) khi đó \[AM = 150\,{\rm{m}}\;(1)\].

Ta có \[\overrightarrow {AB} = \left( {1\,;2\,;2} \right)\] là vectơ chỉ phương của đường thẳng \[AB\].

Phương trình tham số đường thẳng \[AB\]\[\left\{ {\begin{array}{*{20}{c}}{x = 5 + t}\\{y = 7 + 2t}\\{z = 10 + 2t}\end{array}} \right.\quad (t \in \mathbb{R})\].

Do \[M \in AB \Rightarrow M\left( {5 + t;7 + 2t;10 + 2t} \right)\]. Từ (1) ta có \[\sqrt {{t^2} + 4{t^2} + 4{t^2}} = 150 \Leftrightarrow \left| t \right| = 50\].

Với \[t = 50 \Rightarrow M\left( {55;107;110} \right)\] và với \[t = - 50 \Rightarrow M\left( { - 45; - 93; - 90} \right)\].

Vì cao độ điểm \[D\] dương nên cao độ của điểm \[M\] dương\[ \Rightarrow M\left( {55\,;107\,;110} \right)\].

Vậy vectơ chỉ phương của đường thẳng \[CD\]\[\overrightarrow {CM} = \left( {40;90;105} \right)\].

Khi đó, phương trình tham số đường thẳng \[CD\]\[\left\{ {\begin{array}{*{20}{c}}{x = 15 + 40t'}\\{y = 17 + 90t'}\\{z = 5 + 105t'}\end{array}} \right.\quad (t' \in \mathbb{R})\].

Mà điểm \[D\] cách mặt đất \[26\,{\rm{m}}\] nên điểm \[D\] có cao độ bằng \[26\]

\[ \Rightarrow \]\[5 + 105t' = 26 \Leftrightarrow t' = \frac{1}{5} \Rightarrow D\left( {23\,;35\,;26} \right)\]. \[C\left( {15\,;17\,;5} \right)\]

Khi đó độ dài \[CD = \sqrt {{{\left( {15 - 23} \right)}^2} + {{\left( {17 - 35} \right)}^2} + {{\left( {5 - 26} \right)}^2}} \approx 28,8\,\,{\rm{(m)}}.\]

Đáp án: 28,8.

Lời giải

Media VietJack

Gọi \(A',B'\) lần lượt là hình chiếu vuông góc của \(A,B\) lên mặt phẳng \(\left( P \right)\).

Góc tạo bởi \(MA\) với mặt vườn và góc tạo bởi \(MB\) với mặt vườn phải luôn bằng nhau.

Nên ta có \( \Rightarrow \frac{{MA}}{{MB}} = \frac{{AA'}}{{BB'}} = \frac{{d\left( {A,\left( P \right)} \right)}}{{d\left( {B,\left( P \right)} \right)}}\).

\(d\left( {A,\left( P \right)} \right) = \frac{{\left| {2 \cdot 40 + 2 \cdot \left( { - 40} \right) - 12 - 12} \right|}}{{\sqrt {{2^2} + {2^2} + {{\left( { - 1} \right)}^2}} }} = 8\); \[d\left( {B,\left( P \right)} \right) = \frac{{\left| {2 \cdot \left( { - 40} \right) + 2 \cdot 50 - 38 - 12} \right|}}{{\sqrt {{2^2} + {2^2} + {{\left( { - 1} \right)}^2}} }} = 10\].

\( \Rightarrow \frac{{MA}}{{MB}} = \frac{8}{{10}} = \frac{4}{5} \Rightarrow 5MA = 4MB\). Gọi \(M\left( {x;y;z} \right)\). Khi đó, ta được:

\(25 \cdot \left[ {{{\left( {x - 40} \right)}^2} + {{\left( {y + 40} \right)}^2} + {{\left( {z - 12} \right)}^2}} \right] = 16 \cdot \left[ {{{\left( {x + 40} \right)}^2} + {{\left( {y - 50} \right)}^2} + {{\left( {z - 38} \right)}^2}} \right]\).

Rút gọn ta được phương trình mặt cầu \(\left( S \right)\) chứa các điểm \(M\) thoả mãn yêu cầu kĩ thuật:

\({x^2} + {y^2} + {z^2} - \frac{{3280}}{9}x + 400y + \frac{{616}}{9}z - \frac{{5104}}{9} = 0\).

Đồng thời, vì điểm \(M\) nằm trên mặt vườn nên \(M \in \left( P \right):\;{\mkern 1mu} 2x + 2y - z - 12 = 0\).

Như vậy, tập hợp điểm \(M\) cần tìm là giao tuyến của mặt cầu \(\left( S \right)\) và mặt phẳng \(\left( P \right)\), tức là một đường tròn \(\left( C \right)\).

Gọi \(I\) là tâm mặt cầu \(\left( S \right)\), ta được: \(I\left( {\frac{{1640}}{9}; - 200; - \frac{{308}}{9}} \right)\).

Bán kính của mặt cầu \(\left( S \right)\):

\(R = \sqrt {{a^2} + {b^2} + {c^2} - d} = \sqrt {{{\left( {\frac{{1640}}{9}} \right)}^2} + {{\left( { - 200} \right)}^2} + {{\left( {\frac{{ - 308}}{9}} \right)}^2} + \frac{{5104}}{9}} = \sqrt {\frac{{6070400}}{{81}}} \).

Khoảng cách từ tâm \(I\) đến mặt phẳng \(\left( P \right)\): \(d = \frac{{\left| {2 \cdot \frac{{1640}}{9} + 2 \cdot \left( { - 200} \right) + \frac{{308}}{9} - 12} \right|}}{{\sqrt {4 + 4 + 1} }} = \frac{{40}}{9}\).

Bán kính đường tròn giao tuyến \(\left( C \right)\): \(r = \sqrt {{R^2} - {d^2}} = \sqrt {\frac{{6068800}}{{81}}} \).

Vậy độ dài đường ray là chu vi đường tròn \(\left( C \right)\): \(l = 2\pi r \approx 1720\;{\rm{(m)}}\).

Đáp án: 1720.

Câu 4

Một nhóm kỹ sư sử dụng flycam để giám sát một công trình điện mặt trời. Họ mô phỏng không gian công trình trong hệ trục tọa độ \[Oxyz\], đơn vị trên mỗi trục là mét. Mặt đất được xem là mặt phẳng \[\left( {Oxy} \right)\], mái của công trình là một mặt phẳng song song với mặt đất và cách mặt đất \(4{\rm{ m}}\). Flycam bay theo đường thẳng bắt đầu từ điểm \(A\left( {11; - 15;0} \right)\) đến điểm \(B\left( {0; - 6;13} \right)\), sau đó từ điểm \(B\) flycam tiếp tục bay theo đường thẳng có vectơ chỉ phương \(\overrightarrow v = \left( {1;1; - 2} \right)\) để tìm một vị trí điểm \(M\) phù hợp cho việc giám sát công nhân trên mái.

a) Đường bay\(AB\) của flycam có vectơ chỉ phương là \(\overrightarrow {AB} = \left( { - 11;9;13} \right)\).

b) Đường bay \(BM\) của flycam có phương trình tham số là \(\left\{ \begin{array}{l}x = t\\y = - 6 + t\\z = 13 - 2t\end{array} \right.\).

c) Gọi \(\varphi \) là góc tạo bởi đường bay \(BM\) và mái của công trình. Khi đó \(\sin \varphi = - \frac{2}{{\sqrt 6 }}.\)

d) Để đảm bảo an toàn cho công nhân làm việc trên mái công trình, điểm quan sát \(M\) của flycam phải ở phía trên mái công trình và cách mái công trình \(3{\rm{ m}}\). Biết rằng điểm \(M\left( {a;b;c} \right),\) khi đó \(a - b - c = - 7.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP