Hệ thống định vị vệ tinh toàn cầu Beidou (Bắc Đẩu) hiện tại có 35 vệ tinh, mỗi vệ tinh cách Trái Đất khoảng 35 000 km, ta coi Trái Đất là khối cầu có bán kính \(R = 6,4\) (nghìn km). Với hệ tọa độ \(Oxyz\) đã chọn, \(O\) là tâm Trái Đất và đơn vị trên mỗi trục là nghìn km, hai vệ tinh có tọa độ \(A\left( {30;0;0} \right),B\left( {0;30;0} \right)\). Xét điểm \(M\left( {x;y;z} \right)\) thuộc bề mặt Trái Đất. Đặt \(T\) là tổng khoảng cách từ \(M\) đến hai vệ tinh \(A\) và \(B\). Tìm giá trị nhỏ nhất của \(T\) theo đơn vị nghìn km (làm tròn kết quả đến hàng phần chục).
Hệ thống định vị vệ tinh toàn cầu Beidou (Bắc Đẩu) hiện tại có 35 vệ tinh, mỗi vệ tinh cách Trái Đất khoảng 35 000 km, ta coi Trái Đất là khối cầu có bán kính \(R = 6,4\) (nghìn km). Với hệ tọa độ \(Oxyz\) đã chọn, \(O\) là tâm Trái Đất và đơn vị trên mỗi trục là nghìn km, hai vệ tinh có tọa độ \(A\left( {30;0;0} \right),B\left( {0;30;0} \right)\). Xét điểm \(M\left( {x;y;z} \right)\) thuộc bề mặt Trái Đất. Đặt \(T\) là tổng khoảng cách từ \(M\) đến hai vệ tinh \(A\) và \(B\). Tìm giá trị nhỏ nhất của \(T\) theo đơn vị nghìn km (làm tròn kết quả đến hàng phần chục).
Quảng cáo
Trả lời:

Mặt cầu \(\left( S \right)\) có tâm \(O\left( {0;0;0} \right)\) và bán kính \(R = 6,4\) có phương trình \({x^2} + {y^2} + {z^2} = 40,96\).
Ta có \(OA = 30;OB = 30;AB = 30\sqrt 2 \). Suy ra \(\Delta OAB\) cân tại \(O\).
Gọi \(H\) là trung điểm của \(AB\), khi đó \(H\left( {15;15;0} \right)\), ta có \(OH \bot AB\).
Đường thẳng \(OH\) đi qua \(O\left( {0;0;0} \right)\) và có VTCP \(\overrightarrow {OH} = \left( {15;15;0} \right) = 15\left( {1;1;0} \right)\) là: \(\left\{ \begin{array}{l}x = t\\y = t\\z = 0\end{array} \right.\).
Để \(M \in \left( {OAB} \right)\) thỏa mãn \(MA + MB\) nhỏ nhất thì \(M,A,B\) phải đồng phẳng và \(MA = MB\).
Vì \(MH\) nhỏ nhất. Khi đó \(M\) là giao điểm của \(OH\) và mặt cầu \(\left( S \right)\).
Tọa độ \(M\) thỏa mãn phương trình: \({t^2} + {t^2} + {0^2} = 40,96 \Leftrightarrow 2{t^2} = 40,96 \Leftrightarrow t = \pm \frac{{16\sqrt 2 }}{5}\).
Suy ra \[\left[ \begin{array}{l}{M_1}\left( {\frac{{16\sqrt 2 }}{5};\frac{{16\sqrt 2 }}{5};0} \right) \Rightarrow {M_1}H \approx 14,81\\{M_2}\left( {\frac{{ - 16\sqrt 2 }}{5};\frac{{ - 16\sqrt 2 }}{5};0} \right) \Rightarrow {M_2}H \approx 27,61.\end{array} \right.\]
Vậy điểm cần tìm là: \[M\left( {\frac{{16\sqrt 2 }}{5};\frac{{16\sqrt 2 }}{5};0} \right)\] .
Khi đó, \(T = MA + MB = 2MA = 2\sqrt {{{\left( {\frac{{16\sqrt 2 }}{5} - 30} \right)}^2} + {{\left( {\frac{{16\sqrt 2 }}{5} - 0} \right)}^2} + {0^2}} \approx 51,7\).
Đáp án: 51,7.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \[M = AB \cap CD\] (là điểm hai viên đạn va chạm nhau) khi đó \[AM = 150\,{\rm{m}}\;(1)\].
Ta có \[\overrightarrow {AB} = \left( {1\,;2\,;2} \right)\] là vectơ chỉ phương của đường thẳng \[AB\].
Phương trình tham số đường thẳng \[AB\] là \[\left\{ {\begin{array}{*{20}{c}}{x = 5 + t}\\{y = 7 + 2t}\\{z = 10 + 2t}\end{array}} \right.\quad (t \in \mathbb{R})\].
Do \[M \in AB \Rightarrow M\left( {5 + t;7 + 2t;10 + 2t} \right)\]. Từ (1) ta có \[\sqrt {{t^2} + 4{t^2} + 4{t^2}} = 150 \Leftrightarrow \left| t \right| = 50\].
Với \[t = 50 \Rightarrow M\left( {55;107;110} \right)\] và với \[t = - 50 \Rightarrow M\left( { - 45; - 93; - 90} \right)\].
Vì cao độ điểm \[D\] dương nên cao độ của điểm \[M\] dương\[ \Rightarrow M\left( {55\,;107\,;110} \right)\].
Vậy vectơ chỉ phương của đường thẳng \[CD\] là \[\overrightarrow {CM} = \left( {40;90;105} \right)\].
Khi đó, phương trình tham số đường thẳng \[CD\] là \[\left\{ {\begin{array}{*{20}{c}}{x = 15 + 40t'}\\{y = 17 + 90t'}\\{z = 5 + 105t'}\end{array}} \right.\quad (t' \in \mathbb{R})\].
Mà điểm \[D\] cách mặt đất \[26\,{\rm{m}}\] nên điểm \[D\] có cao độ bằng \[26\]
\[ \Rightarrow \]\[5 + 105t' = 26 \Leftrightarrow t' = \frac{1}{5} \Rightarrow D\left( {23\,;35\,;26} \right)\]. \[C\left( {15\,;17\,;5} \right)\]
Khi đó độ dài \[CD = \sqrt {{{\left( {15 - 23} \right)}^2} + {{\left( {17 - 35} \right)}^2} + {{\left( {5 - 26} \right)}^2}} \approx 28,8\,\,{\rm{(m)}}.\]
Đáp án: 28,8.
Lời giải

Gọi \(A',B'\) lần lượt là hình chiếu vuông góc của \(A,B\) lên mặt phẳng \(\left( P \right)\).
Góc tạo bởi \(MA\) với mặt vườn và góc tạo bởi \(MB\) với mặt vườn phải luôn bằng nhau.
Nên ta có \( \Rightarrow \frac{{MA}}{{MB}} = \frac{{AA'}}{{BB'}} = \frac{{d\left( {A,\left( P \right)} \right)}}{{d\left( {B,\left( P \right)} \right)}}\).
Mà \(d\left( {A,\left( P \right)} \right) = \frac{{\left| {2 \cdot 40 + 2 \cdot \left( { - 40} \right) - 12 - 12} \right|}}{{\sqrt {{2^2} + {2^2} + {{\left( { - 1} \right)}^2}} }} = 8\); \[d\left( {B,\left( P \right)} \right) = \frac{{\left| {2 \cdot \left( { - 40} \right) + 2 \cdot 50 - 38 - 12} \right|}}{{\sqrt {{2^2} + {2^2} + {{\left( { - 1} \right)}^2}} }} = 10\].
\( \Rightarrow \frac{{MA}}{{MB}} = \frac{8}{{10}} = \frac{4}{5} \Rightarrow 5MA = 4MB\). Gọi \(M\left( {x;y;z} \right)\). Khi đó, ta được:
\(25 \cdot \left[ {{{\left( {x - 40} \right)}^2} + {{\left( {y + 40} \right)}^2} + {{\left( {z - 12} \right)}^2}} \right] = 16 \cdot \left[ {{{\left( {x + 40} \right)}^2} + {{\left( {y - 50} \right)}^2} + {{\left( {z - 38} \right)}^2}} \right]\).
Rút gọn ta được phương trình mặt cầu \(\left( S \right)\) chứa các điểm \(M\) thoả mãn yêu cầu kĩ thuật:
\({x^2} + {y^2} + {z^2} - \frac{{3280}}{9}x + 400y + \frac{{616}}{9}z - \frac{{5104}}{9} = 0\).
Đồng thời, vì điểm \(M\) nằm trên mặt vườn nên \(M \in \left( P \right):\;{\mkern 1mu} 2x + 2y - z - 12 = 0\).
Như vậy, tập hợp điểm \(M\) cần tìm là giao tuyến của mặt cầu \(\left( S \right)\) và mặt phẳng \(\left( P \right)\), tức là một đường tròn \(\left( C \right)\).
Gọi \(I\) là tâm mặt cầu \(\left( S \right)\), ta được: \(I\left( {\frac{{1640}}{9}; - 200; - \frac{{308}}{9}} \right)\).
Bán kính của mặt cầu \(\left( S \right)\):
\(R = \sqrt {{a^2} + {b^2} + {c^2} - d} = \sqrt {{{\left( {\frac{{1640}}{9}} \right)}^2} + {{\left( { - 200} \right)}^2} + {{\left( {\frac{{ - 308}}{9}} \right)}^2} + \frac{{5104}}{9}} = \sqrt {\frac{{6070400}}{{81}}} \).
Khoảng cách từ tâm \(I\) đến mặt phẳng \(\left( P \right)\): \(d = \frac{{\left| {2 \cdot \frac{{1640}}{9} + 2 \cdot \left( { - 200} \right) + \frac{{308}}{9} - 12} \right|}}{{\sqrt {4 + 4 + 1} }} = \frac{{40}}{9}\).
Bán kính đường tròn giao tuyến \(\left( C \right)\): \(r = \sqrt {{R^2} - {d^2}} = \sqrt {\frac{{6068800}}{{81}}} \).
Vậy độ dài đường ray là chu vi đường tròn \(\left( C \right)\): \(l = 2\pi r \approx 1720\;{\rm{(m)}}\).
Đáp án: 1720.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


