Câu hỏi:

06/11/2025 2,285 Lưu

Trong cuộc gặp mặt dặn dò trước khi lên đường tham gia kì thi học sinh giỏi, có 10 bạn trong đội tuyển gồm 2 bạn đến từ lớp 12A, 3 bạn đến từ lớp 12B, 5 bạn còn lại đến từ 5 lớp khác (mỗi lớp 1 bạn). Thầy giáo xếp ngẫu nhiên các bạn kể trên vào một bàn dài có 10 ghế mà mỗi bên có 5 ghế đối diện nhau. Tính xác suất để không có học sinh nào cùng lớp ngồi đối diện nhau (làm tròn kết quả đến hàng phần chục).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có không gian mẫu là \(n\left( \Omega \right) = 10!\).

Gọi A là biến cố: “Không có học sinh nào cùng lớp ngồi đối diện nhau”;

\(\overline A \) là biến cố “Có ít nhất 2 học sinh cùng lớp ngồi đối diện nhau”;

\({A_1}\) là biến cố: “Học sinh lớp 12A ngồi đối diện nhau”;

\({A_2}\) là biến cố: “Học sinh lớp 12B ngồi đối diện nhau”.

Khi đó \(n\left( {\overline A } \right) = n\left( {{A_1}} \right) + n\left( {{A_2}} \right) - n\left( {{A_1} \cap {A_2}} \right)\).

- Đếm \(n\left( {{A_1}} \right)\): Trước hết cặp ghế cho 2 học sinh 12A ngồi có 5 cách, đổi chỗ 2 bạn này có \(2!\) cách xếp; xếp 8 học sinh còn lại có \(8!\) cách. Do đó \(n\left( {{A_1}} \right) = 5 \cdot 2!\, \cdot 8!\).

- Đếm \(n\left( {{A_2}} \right)\): Chọn cặp ghế chứa 2 học sinh lớp 12B có 5 cách, chọn 2 học sinh lớp 12B xếp vào cặp ghế này có \(A_3^2\) cách; xếp 8 học sinh còn lại có \(8!\) cách. Do đó \(n\left( {{A_2}} \right) = 5 \cdot A_3^2 \cdot 8!\).

- Đếm \(n\left( {{A_1} \cap {A_2}} \right)\): Chọn 2 cặp ghế trong 5 cặp ghế có \(C_5^2\) cách; trong 2 cặp này chọn 1 cặp cho 2 học sinh lớp 12A có 2 cách, đổi chỗ 2 học sinh này có \(2!\) cách; chọn 2 học sinh lớp 12B xếp vào cặp ghế còn lại có \(A_3^2\) cách; xếp 6 học sinh còn lại có \(6!\) cách.

Do đó \(n\left( {{A_1} \cap {A_2}} \right) = C_5^2 \cdot 2 \cdot 2! \cdot A_3^2 \cdot 6!\).

Suy ra \(n\left( {\overline A } \right) = n\left( {{A_1}} \right) + n\left( {{A_2}} \right) - n\left( {{A_1} \cap {A_2}} \right) = 1\,440\,000\).

Từ đó \(P\left( {\overline A } \right) = \frac{{25}}{{63}} \Rightarrow P\left( A \right) = \frac{{38}}{{63}} \approx 0,6\).

Đáp án: 0,6.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(x + 120 + y + 70 + 60 = 400\)\( \Leftrightarrow x + y = 150\).

Trường hợp 1: \[x > 100 \Rightarrow 0 < y < 50\].

Ta có \[{Q_1} \in \left[ {0;20} \right)\] nên \[{Q_1} = 0 + \frac{{\frac{{400}}{4}}}{x}.\left( {20 - 0} \right) = \frac{{2000}}{x}\].

Ta có \({Q_3}\)\( \in \left[ {60;\,80} \right)\) nên \({Q_3} = 60 + \frac{{\frac{{3 \cdot 400}}{4} - \left( {x + y + 120} \right)}}{{70}} \cdot \left( {80 - 60} \right)\)\( = \frac{{480}}{7}\).

\({\Delta _Q} = \frac{{845}}{{21}}\)\( \Leftrightarrow {Q_3} - {Q_1} = \frac{{845}}{{21}}\)\( \Leftrightarrow \frac{{480}}{7} - \frac{{2000}}{x} = \frac{{845}}{{21}} \Leftrightarrow x = \frac{{1200}}{{17}} < 100\) (không thỏa mãn).

Trường hợp 2: \(0 < x \le 100 \Rightarrow 50 \le y < 150\).

Khi đó, \({Q_1}\)\( \in \left[ {20;\,40} \right)\). Suy ra \({Q_1} = 20 + \frac{{\frac{{400}}{4} - x}}{{120}} \cdot \left( {40 - 20} \right) = 20 + \frac{{100 - x}}{6}\).

Ta có \({Q_3}\)\( \in \left[ {60;\,80} \right)\). Suy ra \({Q_3} = 60 + \frac{{\frac{{3 \cdot 400}}{4} - \left( {x + y + 120} \right)}}{{70}} \cdot \left( {80 - 60} \right)\)\( = \frac{{480}}{7}\).

\({\Delta _Q} = \frac{{845}}{{21}}\)\( \Leftrightarrow {Q_3} - {Q_1} = \frac{{845}}{{21}}\)\( \Leftrightarrow \frac{{480}}{7} - \left( {20 + \frac{{100 - x}}{6}} \right) = \frac{{845}}{{21}}\)\( \Leftrightarrow x = 50\) (thỏa mãn).

Suy ra \(y = 100\).

Vậy ta có mẫu số liệu hoàn thiện như sau:

Media VietJack

Thời gian tự học trung bình của 400 học sinh là

\(\frac{{10 \cdot 50 + 30 \cdot 120 + 50 \cdot 100 + 70 \cdot 70 + 90 \cdot 60}}{{400}} = 48,5\).

Đáp án: 48,5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( {22;\,24} \right)\).            
 B. \(\left( {20;\,22} \right)\).     
C. \(\left( {18;\,20} \right)\).  
D. \(\left( {24;\,26} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP