Câu hỏi:

06/11/2025 188 Lưu

Trong một giờ ôn tập môn Toán, thầy giáo có chuẩn bị các phiếu học tập gồm hai chủ đề là Thống kê và Xác suất để giao cho 40 bạn học sinh của lớp 12T. Sau khi hết giờ học, thầy giáo thu phiếu và nhận thấy rằng: Có 35 học sinh làm tốt chủ đề Thống kê, có 30 học sinh làm tốt chủ đề Xác suất, có 4 học sinh làm hai chủ đề đều không tốt. Chọn ngẫu nhiên 1 học sinh trong lớp. Gọi các biến cố:

            \(A\): “Học sinh được chọn làm tốt chủ đề Thống kê”;

            \(B\): “Học sinh được chọn làm tốt chủ đề Xác suất”.

a) \[P\left( A \right) = 0,875\].

b) \(P\left( B \right) = 0,75\).

c) \(P\left( {A \cup B} \right) = 0,8125\).

d) \(P\left( {AB} \right) = 0,725\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Ta có \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{35}}{{40}} = 0,875\).

b) Đúng. Ta có \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{30}}{{40}} = 0,75\).

c) Sai. \(A \cup B\): “Học sinh được chọn làm tốt chủ đề Xác suất hoặc chủ đề Thống kê”.

\(n\left( {A \cup B} \right) = 40 - 4 = 36 \Rightarrow P\left( {A \cup B} \right) = \frac{{36}}{{40}} = 0,9\).

d) Đúng. Ta có \(AB\) là biến cố: “Học sinh làm tốt cả hai chủ đề Xác suất và Thống kê”.

Từ công thức cộng xác suất, ta suy ra

\(P\left( {AB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right) = 0,875 + 0,75 - 0,9 = 0,725\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có không gian mẫu là \(n\left( \Omega \right) = 10!\).

Gọi A là biến cố: “Không có học sinh nào cùng lớp ngồi đối diện nhau”;

\(\overline A \) là biến cố “Có ít nhất 2 học sinh cùng lớp ngồi đối diện nhau”;

\({A_1}\) là biến cố: “Học sinh lớp 12A ngồi đối diện nhau”;

\({A_2}\) là biến cố: “Học sinh lớp 12B ngồi đối diện nhau”.

Khi đó \(n\left( {\overline A } \right) = n\left( {{A_1}} \right) + n\left( {{A_2}} \right) - n\left( {{A_1} \cap {A_2}} \right)\).

- Đếm \(n\left( {{A_1}} \right)\): Trước hết cặp ghế cho 2 học sinh 12A ngồi có 5 cách, đổi chỗ 2 bạn này có \(2!\) cách xếp; xếp 8 học sinh còn lại có \(8!\) cách. Do đó \(n\left( {{A_1}} \right) = 5 \cdot 2!\, \cdot 8!\).

- Đếm \(n\left( {{A_2}} \right)\): Chọn cặp ghế chứa 2 học sinh lớp 12B có 5 cách, chọn 2 học sinh lớp 12B xếp vào cặp ghế này có \(A_3^2\) cách; xếp 8 học sinh còn lại có \(8!\) cách. Do đó \(n\left( {{A_2}} \right) = 5 \cdot A_3^2 \cdot 8!\).

- Đếm \(n\left( {{A_1} \cap {A_2}} \right)\): Chọn 2 cặp ghế trong 5 cặp ghế có \(C_5^2\) cách; trong 2 cặp này chọn 1 cặp cho 2 học sinh lớp 12A có 2 cách, đổi chỗ 2 học sinh này có \(2!\) cách; chọn 2 học sinh lớp 12B xếp vào cặp ghế còn lại có \(A_3^2\) cách; xếp 6 học sinh còn lại có \(6!\) cách.

Do đó \(n\left( {{A_1} \cap {A_2}} \right) = C_5^2 \cdot 2 \cdot 2! \cdot A_3^2 \cdot 6!\).

Suy ra \(n\left( {\overline A } \right) = n\left( {{A_1}} \right) + n\left( {{A_2}} \right) - n\left( {{A_1} \cap {A_2}} \right) = 1\,440\,000\).

Từ đó \(P\left( {\overline A } \right) = \frac{{25}}{{63}} \Rightarrow P\left( A \right) = \frac{{38}}{{63}} \approx 0,6\).

Đáp án: 0,6.

Lời giải

Ta có \(x + 120 + y + 70 + 60 = 400\)\( \Leftrightarrow x + y = 150\).

Trường hợp 1: \[x > 100 \Rightarrow 0 < y < 50\].

Ta có \[{Q_1} \in \left[ {0;20} \right)\] nên \[{Q_1} = 0 + \frac{{\frac{{400}}{4}}}{x}.\left( {20 - 0} \right) = \frac{{2000}}{x}\].

Ta có \({Q_3}\)\( \in \left[ {60;\,80} \right)\) nên \({Q_3} = 60 + \frac{{\frac{{3 \cdot 400}}{4} - \left( {x + y + 120} \right)}}{{70}} \cdot \left( {80 - 60} \right)\)\( = \frac{{480}}{7}\).

\({\Delta _Q} = \frac{{845}}{{21}}\)\( \Leftrightarrow {Q_3} - {Q_1} = \frac{{845}}{{21}}\)\( \Leftrightarrow \frac{{480}}{7} - \frac{{2000}}{x} = \frac{{845}}{{21}} \Leftrightarrow x = \frac{{1200}}{{17}} < 100\) (không thỏa mãn).

Trường hợp 2: \(0 < x \le 100 \Rightarrow 50 \le y < 150\).

Khi đó, \({Q_1}\)\( \in \left[ {20;\,40} \right)\). Suy ra \({Q_1} = 20 + \frac{{\frac{{400}}{4} - x}}{{120}} \cdot \left( {40 - 20} \right) = 20 + \frac{{100 - x}}{6}\).

Ta có \({Q_3}\)\( \in \left[ {60;\,80} \right)\). Suy ra \({Q_3} = 60 + \frac{{\frac{{3 \cdot 400}}{4} - \left( {x + y + 120} \right)}}{{70}} \cdot \left( {80 - 60} \right)\)\( = \frac{{480}}{7}\).

\({\Delta _Q} = \frac{{845}}{{21}}\)\( \Leftrightarrow {Q_3} - {Q_1} = \frac{{845}}{{21}}\)\( \Leftrightarrow \frac{{480}}{7} - \left( {20 + \frac{{100 - x}}{6}} \right) = \frac{{845}}{{21}}\)\( \Leftrightarrow x = 50\) (thỏa mãn).

Suy ra \(y = 100\).

Vậy ta có mẫu số liệu hoàn thiện như sau:

Media VietJack

Thời gian tự học trung bình của 400 học sinh là

\(\frac{{10 \cdot 50 + 30 \cdot 120 + 50 \cdot 100 + 70 \cdot 70 + 90 \cdot 60}}{{400}} = 48,5\).

Đáp án: 48,5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( {22;\,24} \right)\).            
 B. \(\left( {20;\,22} \right)\).     
C. \(\left( {18;\,20} \right)\).  
D. \(\left( {24;\,26} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP