Trong một giờ ôn tập môn Toán, thầy giáo có chuẩn bị các phiếu học tập gồm hai chủ đề là Thống kê và Xác suất để giao cho 40 bạn học sinh của lớp 12T. Sau khi hết giờ học, thầy giáo thu phiếu và nhận thấy rằng: Có 35 học sinh làm tốt chủ đề Thống kê, có 30 học sinh làm tốt chủ đề Xác suất, có 4 học sinh làm hai chủ đề đều không tốt. Chọn ngẫu nhiên 1 học sinh trong lớp. Gọi các biến cố:
\(A\): “Học sinh được chọn làm tốt chủ đề Thống kê”;
\(B\): “Học sinh được chọn làm tốt chủ đề Xác suất”.
a) \[P\left( A \right) = 0,875\].
b) \(P\left( B \right) = 0,75\).
c) \(P\left( {A \cup B} \right) = 0,8125\).
d) \(P\left( {AB} \right) = 0,725\).
Trong một giờ ôn tập môn Toán, thầy giáo có chuẩn bị các phiếu học tập gồm hai chủ đề là Thống kê và Xác suất để giao cho 40 bạn học sinh của lớp 12T. Sau khi hết giờ học, thầy giáo thu phiếu và nhận thấy rằng: Có 35 học sinh làm tốt chủ đề Thống kê, có 30 học sinh làm tốt chủ đề Xác suất, có 4 học sinh làm hai chủ đề đều không tốt. Chọn ngẫu nhiên 1 học sinh trong lớp. Gọi các biến cố:
\(A\): “Học sinh được chọn làm tốt chủ đề Thống kê”;
\(B\): “Học sinh được chọn làm tốt chủ đề Xác suất”.
a) \[P\left( A \right) = 0,875\].
b) \(P\left( B \right) = 0,75\).
c) \(P\left( {A \cup B} \right) = 0,8125\).
d) \(P\left( {AB} \right) = 0,725\).
Quảng cáo
Trả lời:
a) Đúng. Ta có \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{35}}{{40}} = 0,875\).
b) Đúng. Ta có \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{30}}{{40}} = 0,75\).
c) Sai. \(A \cup B\): “Học sinh được chọn làm tốt chủ đề Xác suất hoặc chủ đề Thống kê”.
\(n\left( {A \cup B} \right) = 40 - 4 = 36 \Rightarrow P\left( {A \cup B} \right) = \frac{{36}}{{40}} = 0,9\).
d) Đúng. Ta có \(AB\) là biến cố: “Học sinh làm tốt cả hai chủ đề Xác suất và Thống kê”.
Từ công thức cộng xác suất, ta suy ra
\(P\left( {AB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right) = 0,875 + 0,75 - 0,9 = 0,725\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có không gian mẫu là \(n\left( \Omega \right) = 10!\).
Gọi A là biến cố: “Không có học sinh nào cùng lớp ngồi đối diện nhau”;
\(\overline A \) là biến cố “Có ít nhất 2 học sinh cùng lớp ngồi đối diện nhau”;
\({A_1}\) là biến cố: “Học sinh lớp 12A ngồi đối diện nhau”;
\({A_2}\) là biến cố: “Học sinh lớp 12B ngồi đối diện nhau”.
Khi đó \(n\left( {\overline A } \right) = n\left( {{A_1}} \right) + n\left( {{A_2}} \right) - n\left( {{A_1} \cap {A_2}} \right)\).
- Đếm \(n\left( {{A_1}} \right)\): Trước hết cặp ghế cho 2 học sinh 12A ngồi có 5 cách, đổi chỗ 2 bạn này có \(2!\) cách xếp; xếp 8 học sinh còn lại có \(8!\) cách. Do đó \(n\left( {{A_1}} \right) = 5 \cdot 2!\, \cdot 8!\).
- Đếm \(n\left( {{A_2}} \right)\): Chọn cặp ghế chứa 2 học sinh lớp 12B có 5 cách, chọn 2 học sinh lớp 12B xếp vào cặp ghế này có \(A_3^2\) cách; xếp 8 học sinh còn lại có \(8!\) cách. Do đó \(n\left( {{A_2}} \right) = 5 \cdot A_3^2 \cdot 8!\).
- Đếm \(n\left( {{A_1} \cap {A_2}} \right)\): Chọn 2 cặp ghế trong 5 cặp ghế có \(C_5^2\) cách; trong 2 cặp này chọn 1 cặp cho 2 học sinh lớp 12A có 2 cách, đổi chỗ 2 học sinh này có \(2!\) cách; chọn 2 học sinh lớp 12B xếp vào cặp ghế còn lại có \(A_3^2\) cách; xếp 6 học sinh còn lại có \(6!\) cách.
Do đó \(n\left( {{A_1} \cap {A_2}} \right) = C_5^2 \cdot 2 \cdot 2! \cdot A_3^2 \cdot 6!\).
Suy ra \(n\left( {\overline A } \right) = n\left( {{A_1}} \right) + n\left( {{A_2}} \right) - n\left( {{A_1} \cap {A_2}} \right) = 1\,440\,000\).
Từ đó \(P\left( {\overline A } \right) = \frac{{25}}{{63}} \Rightarrow P\left( A \right) = \frac{{38}}{{63}} \approx 0,6\).
Đáp án: 0,6.
Lời giải
Ta có \(x + 120 + y + 70 + 60 = 400\)\( \Leftrightarrow x + y = 150\).
Trường hợp 1: \[x > 100 \Rightarrow 0 < y < 50\].
Ta có \[{Q_1} \in \left[ {0;20} \right)\] nên \[{Q_1} = 0 + \frac{{\frac{{400}}{4}}}{x}.\left( {20 - 0} \right) = \frac{{2000}}{x}\].
Ta có \({Q_3}\)\( \in \left[ {60;\,80} \right)\) nên \({Q_3} = 60 + \frac{{\frac{{3 \cdot 400}}{4} - \left( {x + y + 120} \right)}}{{70}} \cdot \left( {80 - 60} \right)\)\( = \frac{{480}}{7}\).
\({\Delta _Q} = \frac{{845}}{{21}}\)\( \Leftrightarrow {Q_3} - {Q_1} = \frac{{845}}{{21}}\)\( \Leftrightarrow \frac{{480}}{7} - \frac{{2000}}{x} = \frac{{845}}{{21}} \Leftrightarrow x = \frac{{1200}}{{17}} < 100\) (không thỏa mãn).
Trường hợp 2: \(0 < x \le 100 \Rightarrow 50 \le y < 150\).
Khi đó, \({Q_1}\)\( \in \left[ {20;\,40} \right)\). Suy ra \({Q_1} = 20 + \frac{{\frac{{400}}{4} - x}}{{120}} \cdot \left( {40 - 20} \right) = 20 + \frac{{100 - x}}{6}\).
Ta có \({Q_3}\)\( \in \left[ {60;\,80} \right)\). Suy ra \({Q_3} = 60 + \frac{{\frac{{3 \cdot 400}}{4} - \left( {x + y + 120} \right)}}{{70}} \cdot \left( {80 - 60} \right)\)\( = \frac{{480}}{7}\).
\({\Delta _Q} = \frac{{845}}{{21}}\)\( \Leftrightarrow {Q_3} - {Q_1} = \frac{{845}}{{21}}\)\( \Leftrightarrow \frac{{480}}{7} - \left( {20 + \frac{{100 - x}}{6}} \right) = \frac{{845}}{{21}}\)\( \Leftrightarrow x = 50\) (thỏa mãn).
Suy ra \(y = 100\).
Vậy ta có mẫu số liệu hoàn thiện như sau:

Thời gian tự học trung bình của 400 học sinh là
\(\frac{{10 \cdot 50 + 30 \cdot 120 + 50 \cdot 100 + 70 \cdot 70 + 90 \cdot 60}}{{400}} = 48,5\).
Đáp án: 48,5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

