Một xạ thủ bắn bia, trên bia có các vòng tròn tính điểm (từ 5 đến 10) như hình vẽ.

Mỗi lần bắn, xác suất xạ thủ đó bắn trúng vòng 8 là \(0,25\); trúng vòng dưới 8 (kẻ cả bắn trượt) là \(0,4\). Gọi \({P_1},{P_2}\) lần lượt là xác suất xạ thủ đó bắn trúng vòng 10 và vòng 9 trong mỗi lần bắn. Biết rằng nếu xạ thủ đó bắn ba phát vào bia thì xác suất cả ba lần bắn trúng vòng 10 là \(0,003375\).
a) \({P_1} = 0,15\).
b) \({P_2} = 0,18\).
c) Nếu xạ thủ đó bắn ba phát thì xác suất đạt 29 điểm là \(0,0045\).
d) Nếu xạ thủ đó bắn ba phát thì xác suất đạt ít nhất 28 điểm là \(0,05175\).
Quảng cáo
Trả lời:
a) Đúng. Xác suất 3 lần bắn trúng vòng 10 là \(P_1^3 = 0,003375 \Rightarrow {P_1} = \sqrt[3]{{0,003375}} = 0,15\).
b) Sai. \({P_2} = 1 - 0,25 - 0,4 - 0,15 = 0,2\).
c) Sai. Để đạt 29 điểm thì cần 2 lần bắn trúng vòng 10 và 1 lần bắn trúng vòng 9.
Có 3 cách chọn lần bắn trúng vòng 9 nên xác suất là \(3 \cdot 0,2 \cdot 0,{15^2} = 0,0135\).
d) Đúng. Xác suất đạt 30 điểm là 0,003375; xác suất đạt 29 điểm là 0,0135.
Tính xác suất đạt 28 điểm:
TH1: Có 2 lần bắn trúng vòng 10 và 1 lần bắn trúng vòng 8: Xác suất là \(3 \cdot 0,25 \cdot 0,{15^2}\).
TH2: Có 1 lần bắn trúng vòng 10 và 2 lần bắn trúng vòng 9: Xác suất là \(3 \cdot 0,15 \cdot 0,{2^2}\).
Suy ra xác suất đạt 28 điểm là: \(3 \cdot 0,25 \cdot 0,{15^2} + 3 \cdot 0,15 \cdot 0,{2^2} = 0,034875\).
Vậy xác suất đạt ít nhất 28 điểm là \(0,003375 + 0,0135 + 0,034875 = 0,05175\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có không gian mẫu là \(n\left( \Omega \right) = 10!\).
Gọi A là biến cố: “Không có học sinh nào cùng lớp ngồi đối diện nhau”;
\(\overline A \) là biến cố “Có ít nhất 2 học sinh cùng lớp ngồi đối diện nhau”;
\({A_1}\) là biến cố: “Học sinh lớp 12A ngồi đối diện nhau”;
\({A_2}\) là biến cố: “Học sinh lớp 12B ngồi đối diện nhau”.
Khi đó \(n\left( {\overline A } \right) = n\left( {{A_1}} \right) + n\left( {{A_2}} \right) - n\left( {{A_1} \cap {A_2}} \right)\).
- Đếm \(n\left( {{A_1}} \right)\): Trước hết cặp ghế cho 2 học sinh 12A ngồi có 5 cách, đổi chỗ 2 bạn này có \(2!\) cách xếp; xếp 8 học sinh còn lại có \(8!\) cách. Do đó \(n\left( {{A_1}} \right) = 5 \cdot 2!\, \cdot 8!\).
- Đếm \(n\left( {{A_2}} \right)\): Chọn cặp ghế chứa 2 học sinh lớp 12B có 5 cách, chọn 2 học sinh lớp 12B xếp vào cặp ghế này có \(A_3^2\) cách; xếp 8 học sinh còn lại có \(8!\) cách. Do đó \(n\left( {{A_2}} \right) = 5 \cdot A_3^2 \cdot 8!\).
- Đếm \(n\left( {{A_1} \cap {A_2}} \right)\): Chọn 2 cặp ghế trong 5 cặp ghế có \(C_5^2\) cách; trong 2 cặp này chọn 1 cặp cho 2 học sinh lớp 12A có 2 cách, đổi chỗ 2 học sinh này có \(2!\) cách; chọn 2 học sinh lớp 12B xếp vào cặp ghế còn lại có \(A_3^2\) cách; xếp 6 học sinh còn lại có \(6!\) cách.
Do đó \(n\left( {{A_1} \cap {A_2}} \right) = C_5^2 \cdot 2 \cdot 2! \cdot A_3^2 \cdot 6!\).
Suy ra \(n\left( {\overline A } \right) = n\left( {{A_1}} \right) + n\left( {{A_2}} \right) - n\left( {{A_1} \cap {A_2}} \right) = 1\,440\,000\).
Từ đó \(P\left( {\overline A } \right) = \frac{{25}}{{63}} \Rightarrow P\left( A \right) = \frac{{38}}{{63}} \approx 0,6\).
Đáp án: 0,6.
Lời giải
Ta có \(x + 120 + y + 70 + 60 = 400\)\( \Leftrightarrow x + y = 150\).
Trường hợp 1: \[x > 100 \Rightarrow 0 < y < 50\].
Ta có \[{Q_1} \in \left[ {0;20} \right)\] nên \[{Q_1} = 0 + \frac{{\frac{{400}}{4}}}{x}.\left( {20 - 0} \right) = \frac{{2000}}{x}\].
Ta có \({Q_3}\)\( \in \left[ {60;\,80} \right)\) nên \({Q_3} = 60 + \frac{{\frac{{3 \cdot 400}}{4} - \left( {x + y + 120} \right)}}{{70}} \cdot \left( {80 - 60} \right)\)\( = \frac{{480}}{7}\).
\({\Delta _Q} = \frac{{845}}{{21}}\)\( \Leftrightarrow {Q_3} - {Q_1} = \frac{{845}}{{21}}\)\( \Leftrightarrow \frac{{480}}{7} - \frac{{2000}}{x} = \frac{{845}}{{21}} \Leftrightarrow x = \frac{{1200}}{{17}} < 100\) (không thỏa mãn).
Trường hợp 2: \(0 < x \le 100 \Rightarrow 50 \le y < 150\).
Khi đó, \({Q_1}\)\( \in \left[ {20;\,40} \right)\). Suy ra \({Q_1} = 20 + \frac{{\frac{{400}}{4} - x}}{{120}} \cdot \left( {40 - 20} \right) = 20 + \frac{{100 - x}}{6}\).
Ta có \({Q_3}\)\( \in \left[ {60;\,80} \right)\). Suy ra \({Q_3} = 60 + \frac{{\frac{{3 \cdot 400}}{4} - \left( {x + y + 120} \right)}}{{70}} \cdot \left( {80 - 60} \right)\)\( = \frac{{480}}{7}\).
\({\Delta _Q} = \frac{{845}}{{21}}\)\( \Leftrightarrow {Q_3} - {Q_1} = \frac{{845}}{{21}}\)\( \Leftrightarrow \frac{{480}}{7} - \left( {20 + \frac{{100 - x}}{6}} \right) = \frac{{845}}{{21}}\)\( \Leftrightarrow x = 50\) (thỏa mãn).
Suy ra \(y = 100\).
Vậy ta có mẫu số liệu hoàn thiện như sau:

Thời gian tự học trung bình của 400 học sinh là
\(\frac{{10 \cdot 50 + 30 \cdot 120 + 50 \cdot 100 + 70 \cdot 70 + 90 \cdot 60}}{{400}} = 48,5\).
Đáp án: 48,5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

