Cho \(\Delta ABC\) có \(BC = 15\;{\rm{cm}}{\rm{.}}\) Trên cạnh \(BC\) lấy điểm \(M\) sao cho \(BM = 12\;{\rm{cm}}{\rm{.}}\) Trên cạnh \(AC\) lấy điểm \(N\) sao cho \(\frac{{AN}}{{NC}} = 4.\) Khi đó:
Quảng cáo
Trả lời:
Đáp án đúng là: C

Ta có: \(MC = BC - BM = 15 - 12 = 3\;\left( {{\rm{cm}}} \right).\) Do đó, \(\frac{{BM}}{{MC}} = \frac{{12}}{3} = 4 = \frac{{AN}}{{NC}}.\)
\(\Delta ABC\) có: \(\frac{{BM}}{{MC}} = \frac{{AN}}{{NC}}\) nên \(MN\;{\rm{//}}\;AB\) (định lí Thalès đảo). Do đó, \(\widehat B = \widehat {NMC}\) (hai góc đồng vị).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A

\(\Delta ABC\) có: \(\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}}\) thì \(DE\;{\rm{//}}\;BC\) (định lí Thalès đảo).
Lời giải
Đáp án: \(6\)

Qua \(D\) kẻ đường thẳng song song với \(KB\) cắt \(AC\) tại \(M.\)
Vì \(\frac{{BD}}{{CD}} = 3\) nên \(\frac{{BD}}{{BC}} = \frac{3}{4}.\) Vì \(AE = \frac{1}{3}AD\) nên \(\frac{{AE}}{{ED}} = \frac{1}{2}.\)
Tam giác \(AMD\) có \(KE\;{\rm{//}}\;MD\) nên theo định lí Thalès ta có: \(\frac{{AK}}{{KM}} = \frac{{AE}}{{ED}} = \frac{1}{2}\) hay \(AK = \frac{1}{2}KM.\)
Tam giác \(CKB\) có \(KB\;{\rm{//}}\;MD\) nên theo định lí Thalès ta có: \(\frac{{KM}}{{KC}} = \frac{{BD}}{{BC}} = \frac{3}{4}\) hay \(KM = \frac{3}{4}KC.\)
Do đó, \(AK = \frac{1}{2} \cdot \frac{3}{4}KC = \frac{3}{8}KC.\) Do đó, \(AK = \frac{3}{{11}}AC = \frac{3}{{11}} \cdot 22 = 6\;\left( {{\rm{cm}}} \right).\)
Vậy \(AK = 6\;{\rm{cm}}{\rm{.}}\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) \(\frac{{AM}}{{AD}} = \frac{{AI}}{{AC}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

