Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng.

\(\widehat C = \widehat {BFE},\) mà hai góc này ở vị trí đồng vị nên \(EF\;{\rm{//}}\;AC.\)

b) Đúng.

\(EF\;{\rm{//}}\;AC,\)\(EF \bot AB\) nên \(AC \bot AB.\) Do đó, tam giác \(ABC\) vuông tại \(A.\)

c) Sai.

\(\Delta ABC\) có: \(EF\;{\rm{//}}\;AC\) nên theo định lí Thalès ta có: \(\frac{{BE}}{{AB}} = \frac{{BF}}{{BC}} = \frac{{BF}}{{BF + FC}}.\)

Do đó, \(AB = BE:\frac{{BF}}{{BF + FC}} = 3:\frac{5}{{5 + 10}} = 9\;\left( {\rm{m}} \right).\) Vậy \(AB = 9\;{\rm{m}}.\)

d) Đúng.

Diện tích \(\Delta ABC\) vuông tại \(A\) là: \(\frac{1}{2}AB \cdot AC = \frac{1}{2} \cdot 9 \cdot 12 = 54\;\left( {{{\rm{m}}^2}} \right).\)

Vậy diện tích tam giác \(ABC\) bằng \(54\;{{\rm{m}}^2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(6\)

Media VietJack

Lấy điểm \(F\) trên tia \(AM\) sao cho \(M\) là trung điểm của \(EF.\)

Tứ giác \(ECFB\) có: \(M\) là giao điểm của \(EF,\;CB.\)\(M\) là trung điểm của \(EF,\) \(M\) là trung điểm của \(BC.\) Do đó, tứ giác \(ECFB\) là hình bình hành. Do đó, \(CF\;{\rm{//}}\;EB.\) Hay \(NE\;{\rm{//}}\;CF.\)

\(EM = \frac{1}{3}EA,\;EM = \frac{1}{2}EF\) nên \(\frac{1}{3}AE = \frac{1}{2}EF\) suy ra \(\frac{{AE}}{{EF}} = \frac{3}{2}.\)

Tam giác \(ACF\) có: \(NE\;{\rm{//}}\;CF\) nên theo định lí Thalès ta có: \(\frac{{AN}}{{NC}} = \frac{{AE}}{{EF}} = \frac{3}{2}.\)

Do đó, \(\frac{{AN}}{{AC}} = \frac{3}{5}.\) Vậy \(AN = \frac{3}{5} \cdot 10 = 6\;\left( {{\rm{cm}}} \right).\)

Lời giải

Đáp án: \(6\)

Media VietJack

Qua \(D\) kẻ đường thẳng song song với \(KB\) cắt \(AC\) tại \(M.\)

\(\frac{{BD}}{{CD}} = 3\) nên \(\frac{{BD}}{{BC}} = \frac{3}{4}.\)\(AE = \frac{1}{3}AD\) nên \(\frac{{AE}}{{ED}} = \frac{1}{2}.\)

Tam giác \(AMD\)\(KE\;{\rm{//}}\;MD\) nên theo định lí Thalès ta có: \(\frac{{AK}}{{KM}} = \frac{{AE}}{{ED}} = \frac{1}{2}\) hay \(AK = \frac{1}{2}KM.\)

Tam giác \(CKB\)\(KB\;{\rm{//}}\;MD\) nên theo định lí Thalès ta có: \(\frac{{KM}}{{KC}} = \frac{{BD}}{{BC}} = \frac{3}{4}\) hay \(KM = \frac{3}{4}KC.\)

Do đó, \(AK = \frac{1}{2} \cdot \frac{3}{4}KC = \frac{3}{8}KC.\) Do đó, \(AK = \frac{3}{{11}}AC = \frac{3}{{11}} \cdot 22 = 6\;\left( {{\rm{cm}}} \right).\)

Vậy \(AK = 6\;{\rm{cm}}{\rm{.}}\)

Câu 3

A. \(\widehat B = \frac{3}{4}\widehat {NMC.}\)      
B. \(\widehat B = \frac{3}{2}\widehat {NMC.}\)       
C. \(\widehat B = \widehat {NMC.}\)              
D. \(\widehat B = \frac{2}{3}\widehat {NMC.}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{EC}}{{AE}} = \frac{1}{4}.\)      
B. \(\frac{{EC}}{{AE}} = \frac{1}{2}.\)           
C. \(\frac{{EC}}{{AE}} = \frac{2}{3}.\)      
D. \(\frac{{EC}}{{AE}} = \frac{1}{3}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP