Cho \(\Delta ABC\) cân tại \(B.\) Kẻ các đường phân giác \(AM\;\left( {M \in BC} \right),\;CN\;\left( {N \in AB} \right).\)
Quảng cáo
Trả lời:

a) Đúng.
Vì \(AM\) là tia phân giác của \(\widehat {BAC}\) trong \(\Delta ABC\) nên \(\frac{{BM}}{{MC}} = \frac{{AB}}{{AC}}.\)
b) Sai.
Vì \(CN\) là tia phân giác của \(\widehat {BCA}\) trong \(\Delta ABC\) nên \(\frac{{BN}}{{AN}} = \frac{{BC}}{{AC}}.\)
c) Đúng.
Vì \(\Delta ABC\) cân tại \(B\) nên \(AB = BC.\)
Vì \(AB = BC,\;\frac{{BN}}{{AN}} = \frac{{BC}}{{AC}},\;\frac{{BM}}{{MC}} = \frac{{AB}}{{AC}}\) nên \(\frac{{BM}}{{MC}} = \frac{{BN}}{{AN}}.\)
\(\Delta ABC\) có: \(\frac{{BM}}{{MC}} = \frac{{BN}}{{AN}}\) (định lí Thalès đảo) nên \(MN\;{\rm{//}}\;AC.\)
d) Đúng.
Vì \(MN\;{\rm{//}}\;AC\) nên tứ giác \(MNAC\) là hình thang. Lại có: \(\widehat {NAC} = \widehat {MCA}\) (do \(\Delta ABC\) cân tại \(B\)).
Do đó, tứ giác \(MNAC\) là hình thang cân.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(2,5\)

\(\Delta ABC\) có \(AD\) là tia phân
: \(\frac{{AE}}{{EC + AE}} = \frac{2}{{3 + 2}} = \frac{2}{5}.\)giác của \(\widehat {BAC}\) nên \(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} = \frac{4}{6} = \frac{2}{3}.\)
\(\Delta ABC\) có \(DE\;{\rm{//}}\;BC\) nên theo định lí Thalès ta có: \(\frac{{AE}}{{EC}} = \frac{{BD}}{{DC}} = \frac{2}{3}.\) Do đó
Suy ra \(\frac{{AE}}{{AC}} = \frac{2}{5}.\) Do đó, \(AC = 2,5AE.\)
Vậy số thích hợp điền vào “…” là \(2,5.\)
Lời giải
Đáp án: \(50\)

Vì \(I\) là trung điểm của \(BC\) nên \(BI = IC.\)
Vì \(IM\) là tia phân giác của góc \(AIB\) trong \(\Delta IAB\) nên \(\frac{{IB}}{{IA}} = \frac{{BM}}{{MA}}.\)
Vì \(IN\) là tia phân giác của góc \(AIC\) trong \(\Delta IAC\) nên \(\frac{{IC}}{{IA}} = \frac{{NC}}{{NA}}.\)
Vì \(BI = IC,\;\frac{{IB}}{{IA}} = \frac{{BM}}{{MA}},\;\frac{{IC}}{{IA}} = \frac{{NC}}{{NA}}\) nên \(\frac{{BM}}{{MA}} = \frac{{NC}}{{NA}}.\)
\(\Delta ABC\) có \(\frac{{BM}}{{MA}} = \frac{{NC}}{{NA}}\) nên \(MN\;{\rm{//}}\;BC\) (định lí Thalès đảo). Do đó, \(\widehat {AMN} = \widehat B = 50^\circ \) (hai góc đồng vị)
Vậy \(\widehat {AMN} = 50^\circ .\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
