Câu hỏi:

10/11/2025 59 Lưu

Cho \(\Delta ABC\) có các đường phân giác \(AD,\;BE,\;CF\;\left( {D \in BC,\;E \in AC,\;F \in AB} \right).\)

a) \(\frac{{IA}}{{ID}} = \frac{{BD}}{{BA}}.\)
Đúng
Sai
b) \(\frac{{AD}}{{ID}} = \frac{{AB + BD}}{{BD}}.\)
Đúng
Sai
c) \(\frac{{AD}}{{ID}} = \frac{{CA + CD}}{{CD}}.\)
Đúng
Sai
d) \(\frac{{DI}}{{DA}} = \frac{{AC}}{{AB + BC + CA}}.\)
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

a) Sai.

\(BI\) là tia phân giác của \(\widehat {ABD}\) trong \(\Delta ABD\) nên \(\frac{{IA}}{{ID}} = \frac{{BA}}{{BD}}.\)

b) Đúng.

\(\frac{{IA}}{{ID}} = \frac{{BA}}{{BD}}\) nên \(\frac{{IA}}{{AB}} = \frac{{ID}}{{BD}}.\)

Theo tính chất của dãy tỉ số bằng nhau ta có: \(\frac{{IA}}{{AB}} = \frac{{ID}}{{BD}} = \frac{{IA + ID}}{{AB + BD}} = \frac{{AD}}{{AB + BD}}.\)

Suy ra \(\frac{{ID}}{{BD}} = \frac{{AD}}{{AB + BD}}.\)

Vậy \(\frac{{AD}}{{ID}} = \frac{{AB + BD}}{{BD}}.\)

c) Đúng.

\(CI\) là tia phân giác của \(\widehat {ACD}\) trong \(\Delta ACD\) nên \(\frac{{IA}}{{ID}} = \frac{{CA}}{{CD}}.\) Suy ra: \(\frac{{IA}}{{CA}} = \frac{{ID}}{{CD}}.\)

Theo tính chất của dãy tỉ số bằng nhau ta có: \(\frac{{IA}}{{CA}} = \frac{{ID}}{{CD}} = \frac{{IA + ID}}{{CA + CD}} = \frac{{AD}}{{CA + CD}}.\)

Vậy \(\frac{{AD}}{{ID}} = \frac{{CA + CD}}{{CD}}.\)

d) Sai.

\(\frac{{AD}}{{ID}} = \frac{{CA + CD}}{{CD}} = \frac{{AB + BD}}{{BD}}\) nên theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{{AD}}{{ID}} = \frac{{CA + CD}}{{CD}} = \frac{{AB + BD}}{{BD}} = \frac{{CA + CD + AB + BD}}{{CD + BD}} = \frac{{CA + AB + BC}}{{BC}}.\)

Vậy \(\frac{{DI}}{{DA}} = \frac{{BC}}{{AB + BC + CA}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(x = 62\;{\rm{cm}}.\)         
B. \(x = 72\;{\rm{cm}}.\)   
C. \(x = 70\;{\rm{cm}}.\)        
D. \(x = 60\;{\rm{cm}}.\)

Lời giải

Đáp án đúng là: B

\(EM\) là tia phân giác của \(\widehat {DEF}\) trong  \(\Delta DEF\) nên \(\frac{{ED}}{{EF}} = \frac{{DM}}{{MF}}.\)

Suy ra \(EF = \frac{{MF \cdot ED}}{{DM}} = \frac{{56 \cdot 45}}{{35}} = 72\;\left( {{\rm{cm}}} \right).\) Vậy \(x = 72\;{\rm{cm}}.\)

Câu 2

A. \(BC = 20\;{\rm{cm}}{\rm{.}}\)          
B. \(BC = 20,4\;{\rm{cm}}{\rm{.}}\)  
C. \(BC = 20,8\;{\rm{cm}}{\rm{.}}\)           
D. \(BC = 20,6\;{\rm{cm}}{\rm{.}}\)

Lời giải

Đáp án đúng là: C

Media VietJack

\(AD\) là đường phân giác của \(\Delta ABC\) nên \(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}}.\) Suy ra: \(DC = \frac{{AC \cdot BD}}{{AB}} = \frac{{16 \cdot 8}}{{10}} = 12,8\;\left( {{\rm{cm}}} \right).\)

Do đó, \(BC = CD + DB = 12,8 + 8 = 20,8\;\left( {{\rm{cm}}} \right).\) Vậy \(BC = 20,8\;{\rm{cm}}{\rm{.}}\)

Câu 3

A. \(\widehat {DAC} = 60^\circ .\)                 
B. \(\widehat {DAC} = 40^\circ .\)         
C. \(\widehat {DAC} = 50^\circ .\)     
D. \(\widehat {DAC} = 45^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\widehat {ABD} = \frac{2}{3}\widehat {DBC}.\)             
B. \(\widehat {ABD} = \frac{4}{5}\widehat {DBC}.\) 
C. \(\widehat {ABD} = \frac{3}{4}\widehat {DBC}.\)                      
D. \(\widehat {ABD} = \widehat {DBC}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) \(\frac{{CM}}{{CB}} = \frac{1}{2}.\)
Đúng
Sai
b) \(BE = 2EM.\)
Đúng
Sai
c) Thời gian bạn Dũng đi gấp hai lần thời gian bạn Minh đi khi hai bạn gặp nhau tại điểm \(E.\)
Đúng
Sai
d) Bạn Dũng cần xuất phát lúc \(12\) giờ thì hai bạn gặp nhau tại điểm \(E\) lúc \(13\) giờ \(30\) phút.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}}.\)              
B. \(\frac{{AB}}{{AC}} = \frac{{DC}}{{DB}}.\)      
C. \(\frac{{AB}}{{AC}} = \frac{{BD}}{{BC}}.\)            
D. \(\frac{{AB}}{{AC}} = \frac{{DC}}{{BC}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP