Cho \(\Delta ABC\) vuông cân tại \(A.\) Kẻ \(BE\;\left( {E \in AC} \right)\) là tia phân giác của \(\widehat {ABC}\) và \(AH \bot BC\;\left( {H \in BC} \right).\) Goi \(I\) là giao điểm của \(AH\) và \(BE.\)
Cho \(\Delta ABC\) vuông cân tại \(A.\) Kẻ \(BE\;\left( {E \in AC} \right)\) là tia phân giác của \(\widehat {ABC}\) và \(AH \bot BC\;\left( {H \in BC} \right).\) Goi \(I\) là giao điểm của \(AH\) và \(BE.\)
Quảng cáo
Trả lời:

a) Sai.
Vì \(\Delta ABC\) vuông cân tại \(A\) nên \(\widehat {ABC} = \widehat {ACB}.\)
Vì \(BE\) là tia phân giác của \(\widehat {ABC}\) nên \(\widehat {ABI} = \widehat {IBH} = \frac{1}{2}\widehat {ABC}.\)
\(\Delta BIH\) vuông tại \(H\) nên: \(\widehat {BIH} + \widehat {HBI} = 90^\circ \) suy ra \(\widehat {BIH} = 90^\circ - \widehat {HBI} = 90^\circ - \frac{1}{2}\widehat {ABC}.\)
Mà \(\widehat {BIH} = \widehat {AIE}\) (hai góc đối đỉnh) nên \(\widehat {AIE} = 90^\circ - \frac{1}{2}\widehat {ABC}.\)
\(\Delta ABE\) vuông tại \(A\) nên: \(\widehat {IEA} + \widehat {ABI} = 90^\circ \) suy ra \(\widehat {IEA} = 90^\circ - \widehat {ABI} = 90^\circ - \frac{1}{2}\widehat {ABC}.\)
Do đó, \(\widehat {AIE} = \widehat {IEA}.\) Do đó, \(\Delta IAE\) cân tại \(A.\) Do đó, \(AI = AE.\)
b) Đúng.
Vì \(BI\) là tia phân giác của \(\widehat {ABH}\) trong tam giác \(ABH\) nên \(\frac{{AI}}{{IH}} = \frac{{AB}}{{BH}}.\) Suy ra \(\frac{{AB}}{{IA}} = \frac{{BH}}{{HI}}.\)
c) Đúng.
Vì \(BE\) là tia phân giác của \(\widehat {ABC}\) trong tam giác \(\Delta ABC\) nên \(\frac{{AE}}{{EC}} = \frac{{AB}}{{BC}}.\) Suy ra \(\frac{{AB}}{{AE}} = \frac{{BC}}{{EC}}.\)
Vì \(\frac{{AB}}{{IA}} = \frac{{BH}}{{HI}},\;\frac{{AB}}{{AE}} = \frac{{BC}}{{EC}},\;AI = AE\) nên \(\frac{{BH}}{{IH}} = \frac{{BC}}{{EC}}.\)
d) Sai.
Vì \(\frac{{BH}}{{IH}} = \frac{{BC}}{{EC}}\) nên \(EC = \frac{{BC \cdot HI}}{{BH}}.\)
Vì \(\Delta ABC\) vuông cân tại \(A\) nên \(AH\) là đường cao đồng thời là đường trung tuyến của \(\Delta ABC.\)
Do đó, \(BC = 2BH.\) Suy ra: \(EC = \frac{{2BH \cdot HI}}{{BH}} = 2HI.\) Vậy \(EC = 2IH.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải

a) Đúng.
Vì \(BF\) là tia phân giác của \(\widehat {ABC}\) trong \(\Delta ABC\) nên \(\frac{{FA}}{{FC}} = \frac{{BA}}{{BC}}.\)
b) Đúng.
Vì \(AE\) là tia phân giác của \(\widehat {DAB}\) trong \(\Delta ABD\) nên \(\frac{{BE}}{{ED}} = \frac{{AB}}{{AD}}.\)
Ta có: \(BC = AD\) (do tứ giác \(ABCD\) là hình bình hành), \(\frac{{FA}}{{FC}} = \frac{{BA}}{{BC}},\;\frac{{BE}}{{ED}} = \frac{{AB}}{{AD}}\) nên \(\frac{{EB}}{{ED}} = \frac{{FA}}{{FC}}.\)
c) Sai.
Vì \(\frac{{EB}}{{ED}} = \frac{{FA}}{{FC}}\) nên \(\frac{{BE + DE}}{{ED}} = \frac{{AF + FC}}{{FC}}\) hay \(\frac{{BD}}{{ED}} = \frac{{AC}}{{FC}}.\) Suy ra \(\frac{{2OD}}{{ED}} = \frac{{2OC}}{{FC}}\) hay \(\frac{{OD}}{{ED}} = \frac{{OC}}{{FC}}.\)
d) Đúng.
\(\Delta DOC\) có: \(\frac{{OD}}{{ED}} = \frac{{OC}}{{FC}}\) nên \(EF\;{\rm{//}}\;DC\) (Định lí Thalès đảo).
Mà \(DC\;{\rm{//}}\;AB\) (do tứ giác \(ABCD\) là hình bình hành) nên \(EF\;{\rm{//}}\;AB\;{\rm{//}}\;CD.\)
Lời giải
Đáp án: \(50\)

Vì \(I\) là trung điểm của \(BC\) nên \(BI = IC.\)
Vì \(IM\) là tia phân giác của góc \(AIB\) trong \(\Delta IAB\) nên \(\frac{{IB}}{{IA}} = \frac{{BM}}{{MA}}.\)
Vì \(IN\) là tia phân giác của góc \(AIC\) trong \(\Delta IAC\) nên \(\frac{{IC}}{{IA}} = \frac{{NC}}{{NA}}.\)
Vì \(BI = IC,\;\frac{{IB}}{{IA}} = \frac{{BM}}{{MA}},\;\frac{{IC}}{{IA}} = \frac{{NC}}{{NA}}\) nên \(\frac{{BM}}{{MA}} = \frac{{NC}}{{NA}}.\)
\(\Delta ABC\) có \(\frac{{BM}}{{MA}} = \frac{{NC}}{{NA}}\) nên \(MN\;{\rm{//}}\;BC\) (định lí Thalès đảo). Do đó, \(\widehat {AMN} = \widehat B = 50^\circ \) (hai góc đồng vị)
Vậy \(\widehat {AMN} = 50^\circ .\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.