Cho \(\Delta ABC\) vuông cân tại \(A.\) Kẻ \(BE\;\left( {E \in AC} \right)\) là tia phân giác của \(\widehat {ABC}\) và \(AH \bot BC\;\left( {H \in BC} \right).\) Goi \(I\) là giao điểm của \(AH\) và \(BE.\)
Cho \(\Delta ABC\) vuông cân tại \(A.\) Kẻ \(BE\;\left( {E \in AC} \right)\) là tia phân giác của \(\widehat {ABC}\) và \(AH \bot BC\;\left( {H \in BC} \right).\) Goi \(I\) là giao điểm của \(AH\) và \(BE.\)
Quảng cáo
Trả lời:

a) Sai.
Vì \(\Delta ABC\) vuông cân tại \(A\) nên \(\widehat {ABC} = \widehat {ACB}.\)
Vì \(BE\) là tia phân giác của \(\widehat {ABC}\) nên \(\widehat {ABI} = \widehat {IBH} = \frac{1}{2}\widehat {ABC}.\)
\(\Delta BIH\) vuông tại \(H\) nên: \(\widehat {BIH} + \widehat {HBI} = 90^\circ \) suy ra \(\widehat {BIH} = 90^\circ - \widehat {HBI} = 90^\circ - \frac{1}{2}\widehat {ABC}.\)
Mà \(\widehat {BIH} = \widehat {AIE}\) (hai góc đối đỉnh) nên \(\widehat {AIE} = 90^\circ - \frac{1}{2}\widehat {ABC}.\)
\(\Delta ABE\) vuông tại \(A\) nên: \(\widehat {IEA} + \widehat {ABI} = 90^\circ \) suy ra \(\widehat {IEA} = 90^\circ - \widehat {ABI} = 90^\circ - \frac{1}{2}\widehat {ABC}.\)
Do đó, \(\widehat {AIE} = \widehat {IEA}.\) Do đó, \(\Delta IAE\) cân tại \(A.\) Do đó, \(AI = AE.\)
b) Đúng.
Vì \(BI\) là tia phân giác của \(\widehat {ABH}\) trong tam giác \(ABH\) nên \(\frac{{AI}}{{IH}} = \frac{{AB}}{{BH}}.\) Suy ra \(\frac{{AB}}{{IA}} = \frac{{BH}}{{HI}}.\)
c) Đúng.
Vì \(BE\) là tia phân giác của \(\widehat {ABC}\) trong tam giác \(\Delta ABC\) nên \(\frac{{AE}}{{EC}} = \frac{{AB}}{{BC}}.\) Suy ra \(\frac{{AB}}{{AE}} = \frac{{BC}}{{EC}}.\)
Vì \(\frac{{AB}}{{IA}} = \frac{{BH}}{{HI}},\;\frac{{AB}}{{AE}} = \frac{{BC}}{{EC}},\;AI = AE\) nên \(\frac{{BH}}{{IH}} = \frac{{BC}}{{EC}}.\)
d) Sai.
Vì \(\frac{{BH}}{{IH}} = \frac{{BC}}{{EC}}\) nên \(EC = \frac{{BC \cdot HI}}{{BH}}.\)
Vì \(\Delta ABC\) vuông cân tại \(A\) nên \(AH\) là đường cao đồng thời là đường trung tuyến của \(\Delta ABC.\)
Do đó, \(BC = 2BH.\) Suy ra: \(EC = \frac{{2BH \cdot HI}}{{BH}} = 2HI.\) Vậy \(EC = 2IH.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(40\)

Vì \(\frac{{AI}}{{AH}} = \frac{3}{5}\) nên \(\frac{{AI}}{{IH}} = \frac{3}{2}.\)
Vì \(BI\) là tia phân giác của \(\widehat {ABH}\) trong \(\Delta AHB\) nên \(\frac{{AB}}{{BH}} = \frac{{AI}}{{IH}} = \frac{3}{2}.\)
Do đó, \(BH = \frac{2}{3}AB = \frac{2}{3} \cdot 12 = 8\;\left( {{\rm{cm}}} \right).\)
Vì \(AB = AC = 12\;{\rm{cm}}\) nên \(\Delta ABC\) cân tại \(A.\)
Nên \(AH\) là đường cao đồng thời là đường trung tuyến của tam giác đó.
Suy ra: \(BC = 2BH = 2 \cdot 8 = 16\;\left( {{\rm{cm}}} \right).\)
Chu vi \(\Delta ABC\) là: \(AB + AC + BC = 12 + 12 + 16 = 40\;\left( {{\rm{cm}}} \right).\)
Vậy chu vi \(\Delta ABC\) bằng \(40\;{\rm{cm}}{\rm{.}}\)
Câu 2
Lời giải
Đáp án đúng là: A

Vì \(OM\) là tia phân giác của \(\widehat {EOF}\) trong \(\Delta OEF\) nên \(\frac{{EM}}{{MF}} = \frac{{OE}}{{OF}} = \frac{4}{3}.\) Suy ra \(EM = \frac{4}{3}MF.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


