Cho \(\Delta ABC\) có \(AB = 5\;{\rm{cm}},\;AC = 6\;{\rm{cm}},\;BC = 8\;{\rm{cm}}.\) Tia phân giác góc \(B\) cắt \(AC\) tại \(E.\) Độ dài đoạn thẳng \(AE\) bằng bao nhiêu \({\rm{cm?}}\) (Kết quả ghi dưới dạng số thập phân và làm tròn kết quả đến hàng phần mười).
Quảng cáo
Trả lời:
Đáp án: \(2,3\)

Vì \(BE\) là tia phân giác của \(\widehat {ABC}\) trong \(\Delta ABC\) nên \(\frac{{EA}}{{EC}} = \frac{{AB}}{{CB}} = \frac{5}{8}.\) Suy ra: \(EC = \frac{8}{5}EA.\)
Lại có: \(AE + EC = AC\) nên \(AE + \frac{8}{5}AE = 6,\) suy ra \(\frac{{13}}{5} \cdot AE = 6.\) Vậy \(AE \approx 2,3\;{\rm{cm}}{\rm{.}}\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(40\)

Vì \(\frac{{AI}}{{AH}} = \frac{3}{5}\) nên \(\frac{{AI}}{{IH}} = \frac{3}{2}.\)
Vì \(BI\) là tia phân giác của \(\widehat {ABH}\) trong \(\Delta AHB\) nên \(\frac{{AB}}{{BH}} = \frac{{AI}}{{IH}} = \frac{3}{2}.\)
Do đó, \(BH = \frac{2}{3}AB = \frac{2}{3} \cdot 12 = 8\;\left( {{\rm{cm}}} \right).\)
Vì \(AB = AC = 12\;{\rm{cm}}\) nên \(\Delta ABC\) cân tại \(A.\)
Nên \(AH\) là đường cao đồng thời là đường trung tuyến của tam giác đó.
Suy ra: \(BC = 2BH = 2 \cdot 8 = 16\;\left( {{\rm{cm}}} \right).\)
Chu vi \(\Delta ABC\) là: \(AB + AC + BC = 12 + 12 + 16 = 40\;\left( {{\rm{cm}}} \right).\)
Vậy chu vi \(\Delta ABC\) bằng \(40\;{\rm{cm}}{\rm{.}}\)
Câu 2
Lời giải
Đáp án đúng là: A

Vì \(OM\) là tia phân giác của \(\widehat {EOF}\) trong \(\Delta OEF\) nên \(\frac{{EM}}{{MF}} = \frac{{OE}}{{OF}} = \frac{4}{3}.\) Suy ra \(EM = \frac{4}{3}MF.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


