Cho \(\Delta ABC\) có \(AB = AC = 12\;{\rm{cm}}{\rm{.}}\) Tia phân giác của góc \(B\) cắt đường cao \(AH\;\left( {H \in BC} \right)\) của \(\Delta ABC\) tại \(I.\) Biết rằng \(\frac{{AI}}{{AH}} = \frac{3}{5}.\) Tính chu vi \(\Delta ABC.\) (Đơn vị: \({\rm{cm}}\)).
Cho \(\Delta ABC\) có \(AB = AC = 12\;{\rm{cm}}{\rm{.}}\) Tia phân giác của góc \(B\) cắt đường cao \(AH\;\left( {H \in BC} \right)\) của \(\Delta ABC\) tại \(I.\) Biết rằng \(\frac{{AI}}{{AH}} = \frac{3}{5}.\) Tính chu vi \(\Delta ABC.\) (Đơn vị: \({\rm{cm}}\)).
Quảng cáo
Trả lời:
Đáp án: \(40\)

Vì \(\frac{{AI}}{{AH}} = \frac{3}{5}\) nên \(\frac{{AI}}{{IH}} = \frac{3}{2}.\)
Vì \(BI\) là tia phân giác của \(\widehat {ABH}\) trong \(\Delta AHB\) nên \(\frac{{AB}}{{BH}} = \frac{{AI}}{{IH}} = \frac{3}{2}.\)
Do đó, \(BH = \frac{2}{3}AB = \frac{2}{3} \cdot 12 = 8\;\left( {{\rm{cm}}} \right).\)
Vì \(AB = AC = 12\;{\rm{cm}}\) nên \(\Delta ABC\) cân tại \(A.\)
Nên \(AH\) là đường cao đồng thời là đường trung tuyến của tam giác đó.
Suy ra: \(BC = 2BH = 2 \cdot 8 = 16\;\left( {{\rm{cm}}} \right).\)
Chu vi \(\Delta ABC\) là: \(AB + AC + BC = 12 + 12 + 16 = 40\;\left( {{\rm{cm}}} \right).\)
Vậy chu vi \(\Delta ABC\) bằng \(40\;{\rm{cm}}{\rm{.}}\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(2,5\)

\(\Delta ABC\) có \(AD\) là tia phân
: \(\frac{{AE}}{{EC + AE}} = \frac{2}{{3 + 2}} = \frac{2}{5}.\)giác của \(\widehat {BAC}\) nên \(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} = \frac{4}{6} = \frac{2}{3}.\)
\(\Delta ABC\) có \(DE\;{\rm{//}}\;BC\) nên theo định lí Thalès ta có: \(\frac{{AE}}{{EC}} = \frac{{BD}}{{DC}} = \frac{2}{3}.\) Do đó
Suy ra \(\frac{{AE}}{{AC}} = \frac{2}{5}.\) Do đó, \(AC = 2,5AE.\)
Vậy số thích hợp điền vào “…” là \(2,5.\)
Lời giải
Đáp án: \(50\)

Vì \(I\) là trung điểm của \(BC\) nên \(BI = IC.\)
Vì \(IM\) là tia phân giác của góc \(AIB\) trong \(\Delta IAB\) nên \(\frac{{IB}}{{IA}} = \frac{{BM}}{{MA}}.\)
Vì \(IN\) là tia phân giác của góc \(AIC\) trong \(\Delta IAC\) nên \(\frac{{IC}}{{IA}} = \frac{{NC}}{{NA}}.\)
Vì \(BI = IC,\;\frac{{IB}}{{IA}} = \frac{{BM}}{{MA}},\;\frac{{IC}}{{IA}} = \frac{{NC}}{{NA}}\) nên \(\frac{{BM}}{{MA}} = \frac{{NC}}{{NA}}.\)
\(\Delta ABC\) có \(\frac{{BM}}{{MA}} = \frac{{NC}}{{NA}}\) nên \(MN\;{\rm{//}}\;BC\) (định lí Thalès đảo). Do đó, \(\widehat {AMN} = \widehat B = 50^\circ \) (hai góc đồng vị)
Vậy \(\widehat {AMN} = 50^\circ .\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
