Cho tứ giác \(ABCD\) có \(AB = 4\;\,{\rm{cm,}}\;\,AD = 6\;\,{\rm{cm,}}\;\,BD = 8\;\,{\rm{cm,}}\;\,BC = 12\;\,{\rm{cm,}}\;\,CD = 16\;\,{\rm{cm}}{\rm{.}}\)
Quảng cáo
Trả lời:
a) Sai.
Vì \(\frac{4}{8} = \frac{6}{{12}} = \frac{8}{{16}}\;\,\left( { = \frac{1}{2}} \right)\) nên \(\frac{{AB}}{{BD}} = \frac{{AD}}{{BC}} = \frac{{BD}}{{DC}}.\)
b) Đúng.
\(\Delta ABD\) và \(\Delta BDC\) có: \(\frac{{AB}}{{BD}} = \frac{{AD}}{{BC}} = \frac{{BD}}{{DC}}\;\,\left( {{\rm{cmt}}} \right)\) nên
Vậy với tỉ số đồng dạng là \(\frac{{AB}}{{BD}} = 0,5.\)
c) Sai.
Vì nên \(\widehat {ABD} = \widehat {BDC}\) (hai góc tương ứng).
d) Sai.
Tứ giác \(ABCD\) có: \(\widehat {ABD} = \widehat {BDC},\) mà hai góc này ở vị trí so le trong nên \(AB\;{\rm{//}}\;CD.\)
Vậy tứ giác \(ABCD\) là hình thang có \(DC\) là đáy lớn.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(4,5\)
\(\Delta KCI\) và \(\Delta KIP\) có: \(\widehat {CIK} = \widehat P,\;\,\widehat K\) chung nên
Do đó, \(\frac{{KI}}{{KP}} = \frac{{CK}}{{KI}},\) suy ra \(KP = \frac{{K{I^2}}}{{CK}} = \frac{{{3^2}}}{{1,5}} = 6\;\,\left( {{\rm{cm}}} \right).\)
Ta có: \(CP = KP - KC = 6 - 1,5 = 4,5\;\,\left( {{\rm{cm}}} \right).\) Vậy \(CP = 4,5\;\,{\rm{cm}}{\rm{.}}\)
Câu 2
Lời giải
Đáp án đúng là: A

\(\Delta AIC\) và \(\Delta DIB\) có: \(\frac{{AI}}{{ID}} = \frac{{IC}}{{IB}}\;\,\left( {{\rm{do}}\;\,\frac{{12}}{{10}} = \frac{{18}}{{15}}} \right),\;\,\widehat {AIC} = \widehat {BID}\) (hai góc đối đỉnh).
Suy ra . Vậy \(\widehat C = \widehat B.\) (hai góc tương ứng).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



