Cho \(\widehat {xOy},\) trên tia \(Ox\) lấy các điểm \(A,\;\,C;\) trên tia \(Oy\) lấy các điểm \(B,\;\,D\) sao cho \(OA \cdot OC = OB \cdot OD.\) Gọi \(E\) là giao điểm của \(AD\) và \(BC.\)
Quảng cáo
Trả lời:

a) Sai.
Vì \(OA \cdot OC = OB \cdot OD\) nên \(\frac{{OA}}{{OB}} = \frac{{OD}}{{OC}}.\)
b) Đúng.
\(\Delta AOD\) và \(\Delta BOC\) có: \(\frac{{OA}}{{OB}} = \frac{{OD}}{{OC}},\;\,\widehat O\) chung nên
c) Sai.
Vì nên \(\widehat {EAC} = \widehat {EBD}.\)
\(\Delta ACE\) và \(\Delta BDE\) có: \(\widehat {EAC} = \widehat {EBD},\;\,\widehat {AEC} = \widehat {BED}\) (hai góc đối đỉnh).
Do đó,
d) Đúng.
Vì nên \(\frac{{AE}}{{BE}} = \frac{{CE}}{{DE}}\) suy ra \(AE \cdot ED = CE \cdot EB.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(4,5\)
\(\Delta KCI\) và \(\Delta KIP\) có: \(\widehat {CIK} = \widehat P,\;\,\widehat K\) chung nên
Do đó, \(\frac{{KI}}{{KP}} = \frac{{CK}}{{KI}},\) suy ra \(KP = \frac{{K{I^2}}}{{CK}} = \frac{{{3^2}}}{{1,5}} = 6\;\,\left( {{\rm{cm}}} \right).\)
Ta có: \(CP = KP - KC = 6 - 1,5 = 4,5\;\,\left( {{\rm{cm}}} \right).\) Vậy \(CP = 4,5\;\,{\rm{cm}}{\rm{.}}\)
Câu 2
Lời giải
Đáp án đúng là: A

\(\Delta AIC\) và \(\Delta DIB\) có: \(\frac{{AI}}{{ID}} = \frac{{IC}}{{IB}}\;\,\left( {{\rm{do}}\;\,\frac{{12}}{{10}} = \frac{{18}}{{15}}} \right),\;\,\widehat {AIC} = \widehat {BID}\) (hai góc đối đỉnh).
Suy ra . Vậy \(\widehat C = \widehat B.\) (hai góc tương ứng).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



