Câu hỏi:

11/11/2025 59 Lưu

Cho biết hai hình chữ nhật \(ABCD\)\(MNPQ\) (hình vẽ dưới) là hai hình đồng dạng:

Media VietJack

Biết rằng chu vi hình chữ nhật \(ABCD\) bằng \(100\;\,{\rm{cm}}{\rm{.}}\) Khi đó:

a) \(AD = 20\;\,{\rm{cm}}{\rm{.}}\)
Đúng
Sai
b) Hình chữ nhật \(ABCD\) đồng dạng với hình chữ nhật \(MNPQ\) theo tỉ số đồng dạng là 2.
Đúng
Sai
c) \(MQ > 10\;\,{\rm{cm}}{\rm{.}}\)
Đúng
Sai
d) Diện tích hình chữ nhật \(MNPQ\) bằng \(300\;\,{\rm{c}}{{\rm{m}}^2}.\)
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng.

Ta có: \(2\left( {AD + DC} \right) = 100\) suy ra \(AD + 30 = 50,\) suy ra \(AD = 20\;\,\left( {{\rm{cm}}} \right).\) Vậy \(AD = 20\;\,{\rm{cm}}{\rm{.}}\)

b) Đúng.

Hình chữ nhật \(ABCD\) đồng dạng với hình chữ nhật \(MNPQ\) theo tỉ số đồng dạng là: \(\frac{{DC}}{{QP}} = \frac{{30}}{{12}} = 2.\)

Vậy hình chữ nhật \(ABCD\) đồng dạng với hình chữ nhật \(MNPQ\) theo tỉ số đồng dạng là 2.

c) Sai.

Ta có: \(\frac{{AD}}{{MQ}} = \frac{{DC}}{{PQ}} = 2,\) nên \(MQ = AD:2 = 20:2 = 10\;\,\left( {{\rm{cm}}} \right).\) Vậy \(MQ = 10\;\,{\rm{cm}}{\rm{.}}\)

d) Sai.

Diện tích hình chữ nhật \(MNPQ\) là: \(15 \cdot 10 = 150\;\,\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)

Vậy diện tích hình chữ nhật \(MNPQ\) bằng \(150\;\,{\rm{c}}{{\rm{m}}^2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Hình vuông.        
B. Hình tròn.           
C. Hình ngũ giác đều.
D. Hình lục giác đều.

Lời giải

Đáp án đúng là: D

Hình lục giác đều luôn đồng dạng với hình lục giác đều.

Lời giải

Media VietJack

a) Đúng.

\(\Delta {A_1}{B_1}{C_1}\) là hình đồng dạng phối cảnh của \(\Delta ABC\) với tâm \(O\) và tỉ số \(\frac{{{A_1}{B_1}}}{{AB}} = 2\) nên

\(\frac{{{A_1}{B_1}}}{{AB}} = \frac{{{B_1}{C_1}}}{{BC}} = \frac{{{A_1}{C_1}}}{{AC}} = 2.\)

b) Đúng.

\(\frac{{{A_1}{B_1}}}{{AB}} = \frac{{{B_1}{C_1}}}{{BC}} = \frac{{{A_1}{C_1}}}{{AC}} = 2\) nên \({A_1}{B_1} = 2AB = 16\;\,{\rm{m;}}\;\,{B_1}{C_1} = 2BC = 28\;\,{\rm{m;}}\;\,{A_1}{C_1} = 2AC = 22\;\,{\rm{m}}.\)

Chu vi \(\Delta {A_1}{B_1}{C_1}\) là: \(16 + 28 + 22 = 66\;\,\left( {\rm{m}} \right).\) Vậy chu vi tam giác \({A_1}{B_1}{C_1}\) bằng \(66\;\,{\rm{m}}{\rm{.}}\)

c) Sai.

Vì tam giác \({A_2}{B_2}{C_2}\) là hình đồng dạng phối cảnh với tam giác \({A_1}{B_1}{C_1}\) tâm \(I\) và tỉ số đồng dạng \(\frac{{{A_2}{B_2}}}{{{A_1}{B_1}}} = \frac{1}{2}\) nên \(\frac{{{A_1}{B_1}}}{{{A_2}{B_2}}} = \frac{{{B_1}{C_1}}}{{{B_2}{C_2}}} = \frac{{{A_1}{C_1}}}{{{A_2}{C_2}}} = 2.\) Suy ra: \({B_2}{C_2} = \frac{{{B_1}{C_1}}}{2} = 14\;\,\left( {\rm{m}} \right).\) Vậy \({B_2}{C_2} > 10\;\,{\rm{m}}{\rm{.}}\)

d) Đúng.

Theo c) ta có: \({A_2}{B_2} = \frac{{{A_1}{B_1}}}{2} = 8\;\,\left( {\rm{m}} \right);\;\,{A_2}{C_2} = \frac{{{A_1}{C_1}}}{2} = 11\;\,\left( {\rm{m}} \right).\)

\(\Delta ABC\)\(\Delta {A_2}{B_2}{C_2}\) có: \(AB = {A_2}{B_2};\;\,BC = {B_2}{C_2};\;\,AC = {A_2}{C_2}\) nên \(\Delta ABC = \Delta {A_2}{B_2}{C_2}\;\,\left( {c - c - c} \right).\)

Câu 3

a) Độ dài cạnh hình vuông \(ABCD\) bằng \(12\;\,{\rm{cm}}{\rm{.}}\)
Đúng
Sai
b) \(HI = 1,5AB.\)
Đúng
Sai
c) Chu vi hình vuông \(HIKL\) bằng \(20\;\,{\rm{cm}}{\rm{.}}\)
Đúng
Sai
d) Độ dài đường chéo trong hình vuông \(HIKL\) lớn hơn \(15\;\,{\rm{cm}}{\rm{.}}\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Tỉ số đồng dạng bằng 1.                  

B. Tỉ số đồng dạng lớn hơn 1.        

C. Tỉ số đồng dạng nhỏ hơn 1.                           

D. Tỉ số đồng dạng khác 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Hình đồng dạng phối cảnh.         

B. Hình giống nhau.    

C. Hình bằng nhau.                      

D. Hình sao chép.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP