Câu hỏi:

18/11/2025 42 Lưu

Cho BAC nhọn \(\left( {AB < AC} \right)\), đường cao \(AH\). Gọi \(D,E\) lần lượt là hình chiếu của \(H\) trên \(AB,AC\). Biết \(AH = 5{\rm{ cm,}}\) \(DE = 4{\rm{ cm,}}\) \(BC = 8{\rm{ cm}}\).

a) \(\Delta ADH \sim \Delta AHB\).
Đúng
Sai
b) \(A{H^2} = AD.AB\).
Đúng
Sai
c) \(\Delta ADE \sim \Delta CAB\).
Đúng
Sai
d) \({S_{ADE}} = 5{\rm{ c}}{{\rm{m}}^2}\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

a) Đúng.

Xét \(\Delta ADH\)\(\Delta AHB\) có: \(\widehat {HDA} = \widehat {BHA} = 90^\circ \)\(\widehat {DAH} = \widehat {BAH}\) (góc chung)

Suy ra \(\Delta ADH \sim \Delta AHB\) (g.g)

b) Đúng.

Suy ra \(\frac{{AD}}{{AH}} = \frac{{AH}}{{AB}}\) hay \(A{H^2} = AD.AB\) (1)

c) Sai.

Xét \(\Delta AEH\)\(\Delta AHC\) có: \(\widehat {HEA} = \widehat {CHA} = 90^\circ \)\(\widehat {EAH} = \widehat {CAH}\) (góc chung)

Suy ra \(\Delta AEH \sim \Delta AHC\) (g.g).

Suy ra \(\frac{{AE}}{{AH}} = \frac{{AH}}{{AC}}\) hay \(A{H^2} = AE.AC\) (2)

Từ (1) và (2) suy ra \(AD.AB = AE.AC\) hay \(\frac{{AE}}{{AB}} = \frac{{AD}}{{AC}}\).

Xét \(\Delta ADE\)\(\Delta ACB\) có: \(\frac{{AE}}{{AB}} = \frac{{AD}}{{AC}}\)\(\widehat {BAC} = \widehat {DAE}\) (góc chung)

Suy ra \(\Delta ADE \sim \Delta ACB\)(c.g.c)

d) Đúng.

Ta có \({S_{ABC}} = \frac{1}{2}AH.BC = \frac{{8.5}}{2} = 20{\rm{ c}}{{\rm{m}}^2}\).

\(\frac{{{S_{ADE}}}}{{{S_{ABC}}}} = \frac{{D{E^2}}}{{B{C^2}}} = \frac{{{4^2}}}{{{8^2}}} = \frac{1}{4}\).

Do đó, \({S_{ADE}} = \frac{1}{4}{S_{ABC}} = \frac{1}{4}.20 = 5{\rm{ c}}{{\rm{m}}^2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) \(M\) là trung điểm của \(BC.\)
Đúng
Sai
b) \(ME\parallel AB.\)
Đúng
Sai
c) \(AE = MC.\)
Đúng
Sai
d) \(\Delta AEN \sim \Delta CNM\).
Đúng
Sai

Lời giải

Media VietJack

a) Đúng.

Theo đề, tam giác \(ABC\) cân tại \(A\) có đường cao \(AM\) nên \(AM\) cũng là đường trung tuyến của \(\Delta ABC\).

Suy ra \(M\) là trung điểm của \(BC.\)

b) Đúng.

Ta có \(M\) là trung điểm của \(BC\), \(N\) là trung điểm của \(AB\).

Do đó, \(MN\) là đường trung bình của tam giác \(ABC\) nên \(MN\parallel AB\) hay \(ME\parallel AB\).

c) Đúng.

Ta có \(AE\parallel BC\)\(ME\parallel AB\) nên \(AEMB\) là hình bình hành.

Suy ra \(AE = MB\)\(MB = MC\) nên \(AE = MC.\)

d) Sai.

Ta có \(AE\parallel BC\) nên \(AE\parallel MC\).

Do đó, \(\Delta AEN \sim \Delta CMN\).

Câu 2

A. \(k.\)                   
B. \(\frac{1}{k}.\)    
C. \({k^2}.\)                
D. \(\frac{1}{{{k^2}}}.\)

Lời giải

Đáp án đúng là: B

Nếu \(\Delta ABC \sim \Delta DEF\) theo tỉ số \(k\) thì \(\Delta DEF \sim \Delta ABC\) theo tỉ số bằng \(\frac{1}{k}.\)

Câu 3

A. \[EF = 6\,\,{\rm{cm}}{\rm{.}}\]              
B. \[\widehat {E\,} = 80^\circ .\]        
C. \[\widehat {D\,} = 70^\circ .\]           
D. \[\widehat {C\,} = 30^\circ .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\).
Đúng
Sai
b) \(\Delta ABC \sim \Delta ANM\)
Đúng
Sai
c) \(AN = 2,4{\rm{ cm}}\), \(MN = 3,2{\rm{ cm}}\).
Đúng
Sai
d) \(\frac{{{S_{ANM}}}}{{{S_{ABC}}}} = \frac{4}{{25}}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) \(\Delta ABD \sim \Delta ACB\)
Đúng
Sai
b) \(\widehat {ADB} = \widehat {ABC}\).
Đúng
Sai
c) \(AD = 1{\rm{ cm,}}\) \(DC = 2{\rm{ cm}}\).
Đúng
Sai
d) \({S_{ABH}} = 4{S_{ADE}}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Hai tam giác đồng dạng thì bằng nhau.                                    

B. Hai tam giác bằng nhau thì không đồng dạng.

C. Hai tam giác bằng nhau thì đồng dạng.                                    

D. Hai tam giác vuông luôn đồng dạng với nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\Delta ABC \sim \Delta DEF.\]            

B. \[\Delta ABC \sim \Delta DFE.\]

C. \[\Delta ABC \sim \Delta EDF.\]    

D. \[\Delta ABC \sim \Delta EFD.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP