Cường độ một trận động đất \(M\) độ Richter được cho bởi công thức \(M = {\rm{log}}A - {\rm{log}}{A_0}\) với \(A\) là biên độ rung chấn tối đa và \({A_0}\) là một biên độ chuẩn (hằng số). Ngày \(11/3/2011\) một trận siêu động đất xảy ra tại vùng Tohoku, Nhật Bản có cường độ 9,1 độ Richter. Trước đó, vào ngày \(21/5/2003\) trận động đất khác ở phía Bắc Algeria có cường độ 6,8 độ Richter. Hỏi biên độ rung chấn tối đa của trận động đất ở vùng Tohoku, Nhật Bản gấp bao nhiêu lần biên độ rung chấn tối đa của trận động đất ở phía Bắc Algeria? (kết quả làm tròn đến hàng đơn vị).
Quảng cáo
Trả lời:
Ngày \(11/3/2011\) tại vùng Tohoku, Nhật Bản ta có \({M_1} = \log {A_1} - {\rm{log}}{A_0}\) và
\(21/5/2003\) trận động đất khác ở phía Bắc Algeria \({M_2} = \log {A_1} - {\rm{log}}{A_0}\). Cho nên
\({M_1} - {M_2} = \log {A_1} - {\rm{log}}{A_2} = \log \left( {\frac{{{A_1}}}{{{A_2}}}} \right)\). Suy ra \(\frac{{{A_1}}}{{{A_2}}} = {10^{{M_1} - {M_2}}} = {10^{2,3}} \approx 200\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 100
Lợi nhuận thu được là \[L(x) = x(1800 - 6x) - (10000 + 600{\rm{x}} - 0,6{{\rm{x}}^2} + 0,004{{\rm{x}}^3}) = - 0,004{{\rm{x}}^3} - 5,4{{\rm{x}}^2} + 1200{\rm{x}} - 10000\]
\[L'(x) = - 0,012{{\rm{x}}^2} - 10,8x + 1200;\,L'(x) = 0 \Leftrightarrow x = 100;x = - 1000\]
Bảng biến thiên

Vậy mỗi tháng cần sản xuất 100 sản phẩm.
Lời giải
Đáp án: 7.
Gọi \((\alpha )\) là mặt phẳng qua \(A\) và vuông góc với \(d.\) Khi đó, \((\alpha ):2x + 2y - z - 5 = 0.\)
Ta có \(d:\frac{{x - 4}}{2} = \frac{{y - 4}}{2} = \frac{{z - 2}}{{ - 1}} \Rightarrow \left\{ \begin{array}{l}x = 4 + 2t\\y = 4 + 2t\\z = 2 - t\end{array} \right.\) thay vao phương trình của \((\alpha )\) được
\(2(4 + 2t) + 2(4 + 2t) - (2 - t) - 5 = 0 \Leftrightarrow 9t + 9 = 0 \Rightarrow t = - 1 \Rightarrow H(2;2;3)\)
Vậy \(a + b + c = 2 + 2 + 3 = 7.\)
Cách khác
Ta có: \(d{\rm{ qua }}M(4;4;2){\rm{, vtcp }}\vec u = (2;2; - 1);\overrightarrow {MA} = ( - 3; - 3; - 3).\)
\[\overrightarrow {MH} = \frac{{\overrightarrow {MA} .\vec u}}{{|\vec u{|^2}}}.\vec u = \frac{{ - 3.2 - 3.2 + 3}}{{4 + 4 + 1}}\vec u = - \vec u = ( - 2; - 2;1)\]\( \Rightarrow H(2;2;3) \Rightarrow a + b + c = 7.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[x = 9\].
B. \[x = 5\].
C. \[x = 3\].
D. \[x = 7\] .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.