Câu hỏi:

14/11/2025 69 Lưu

Giả sử \(CD = h\) là chiều cao của tháp trong đó \(C\) là chân tháp. Chọn hai điểm \(A,B\) trên mặt đất sao cho ba điểm \(A,\,B,\,C\) thẳng hàng. Ta đo được \(AB = 24m\) \(\widehat {CAD} = 63^\circ \); \(\widehat {CBD} = 48^\circ \). Chiều cao \(h\) của khối tháp gần với giá trị nào sau đây?

A. \(61,4m\);                           
B. \(18,5m\);           
C. \(62,3m\);                                
D. \(18m\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Hướng dẫn giải  Đáp án đúng là: D (ảnh 1)

Ta có \(\widehat {CAD} = 63^\circ \Rightarrow \widehat {BAD} = 117^\circ \Rightarrow \widehat {ADB} = 180^\circ - \left( {117^\circ + 48^\circ } \right) = 15^\circ \)

Áp dụng định lý sin trong tam giác \(ABD\) ta có:

\(\frac{{AB}}{{\sin \widehat {ADB}}} = \frac{{BD}}{{\sin \widehat {BAD}}} \Rightarrow BD = \frac{{AB.\sin \widehat {BAD}}}{{\sin \widehat {ADB}}}\)

Tam giác \(BCD\) vuông tại \(C\) nên có: \(\sin \widehat {CBD} = \frac{{CD}}{{BD}} \Rightarrow CD = BD.\sin \widehat {CBD}\)

Vậy \[CD = \frac{{AB.\sin \widehat {BAD}.\sin \widehat {CBD}}}{{\sin \widehat {ADB}}} = \frac{{24.\sin 117^\circ .sin48^\circ }}{{\sin 15^\circ }} = 61,4m\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\frac{a}{{\sqrt 3 }}\];                               
B. \[\frac{{3a}}{{\sqrt 3 }}\];                              
C. \[\frac{{5a}}{{\sqrt 3 }}\];                              
D. \[\frac{{7a}}{{\sqrt 3 }}\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Diện tích tam giác \[ABC\] đều là:

\[S = AB.AC.sinA = \frac{1}{2}.2a.2a.sin60^\circ = {a^2}\sqrt 3 \]

Nửa chu vi tam giác \[ABC\] là:

\[p = \frac{{2a + 2a + 2a}}{2} = 3a\]

Bán kính đường tròn nội tiếp tam giác \[ABC\] là:

\[r = \frac{S}{p} = \frac{{{a^2}\sqrt 3 }}{{3a}} = \frac{a}{{\sqrt 3 }}\].

Lời giải

Gọi \(x,\,y\) lần lượt là số radio kiểu một và kiểu hai sản xuất được trong một ngày. \(\left( {x,\,\,y \ge 0} \right)\)

radio kiểu một sản xuất trên dây chuyền một với công suất 45 radio/ngày, radio kiểu hai sản xuất trên dây chuyền hai với công suất 80 radio/ngày nên \(x \le 45,\,\,y \le 80\).

Sản xuất \(x\) chiếc radio kiểu một và \(y\) chiếc radio kiểu hai cần số linh kiện là \(12x + 9y\).

số linh kiện có thể sử dụng tối đa trong một ngày là 900 nên \(12x + 9y \le 900\) hay tương đương với \(4x + 3y \le 300\).

Tiền lãi thu được khi bán \(x\) chiếc radio kiểu một và \(y\) chiếc radio kiểu hai là \(T = 250\,\,000x + 180\,\,000y\) (đồng).

Khi đó, bài toán đã cho trở thành: Tìm \(\left( {x;\,\,y} \right)\) thỏa mãn hệ bất phương trình \(\left\{ \begin{array}{l}0 \le x \le 45\\0 \le y \le 80\\4x + 3y \le 300\end{array} \right.\)để \(T = 250\,\,000x + 180\,\,000y\) lớn nhất.

Biểu diễn miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}0 \le x \le 45\\0 \le y \le 80\\4x + 3y \le 300\end{array} \right.\) lên mặt phẳng tọa độ \(Oxy\) ta được:

Một công ty điện tử sản xuất hai kiểu radio trên hai dây chuyền độc lập. Radio kiểu một sản xuất trên dây chuyền một với công suất 45 radio/ngày, radio kiểu hai sản xuất trên dây chuyền hai với công suất 80 radio/ngày. (ảnh 1)

Miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}0 \le x \le 45\\0 \le y \le 80\\4x + 3y \le 300\end{array} \right.\) là miền ngũ giác \(OABCD\) (kể cả biên) với \(O\left( {0;\,\,0} \right),\,\,A\left( {0;\,\,80} \right),\,\,B\left( {15;\,\,80} \right),\,\,C\left( {45;\,\,40} \right),\,\,D\left( {45;\,\,0} \right)\).

Người ta chứng minh được \(T = 250\,\,000x + 180\,\,000y\) đạt giá trị lớn nhất tại một trong các đỉnh của ngũ giác \(OABCD\).

Ta có: \(T\left( {0;\,\,0} \right) = 0\);

\(T\left( {0;\,\,80} \right) = 250\,\,000 \cdot 0 + 180\,\,000 \cdot 80 = 14\,\,400\,\,000\);

\(T\left( {15;\,\,80} \right) = 250\,\,000 \cdot 15 + 180\,\,000 \cdot 80 = 18\,\,150\,\,000\);

\(T\left( {45;\,\,40} \right) = 250\,\,000 \cdot 45 + 180\,\,000 \cdot 40 = 18\,\,450\,\,000\);

\(T\left( {45;\,\,0} \right) = 250\,\,000 \cdot 45 + 180\,\,000 \cdot 0 = 11\,\,250\,\,000\).

Do đó, \(T = 250\,\,000x + 180\,\,000y\) đạt giá trị lớn nhất tại \(\left( {x;\,\,y} \right) = \left( {45;\,\,40} \right)\).

Vậy cần sản xuất 45 radio kiểu một và 40 radio kiểu hai thì lãi thu được trong một ngày là lớn nhất.

Câu 4

A. “\(\forall x \in \mathbb{Z}|x\,\, \vdots \,\,2\)”;  
B. “\(\forall x \in \mathbb{R}|x\,\, \vdots \,\,2\)”;
C. “\(\exists x \in \mathbb{Z}|x\,\, \vdots \,\,2\)”;  
D. “\(\exists x \in \mathbb{R}|x\,\, \vdots \,\,2\)”.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\tan \left( {180^\circ - \alpha } \right) = - \tan \alpha \left( {\alpha \ne 90^\circ } \right)\);             
B. \({\rm{cos}}\left( {180^\circ - \alpha } \right) = {\rm{cos}}\alpha \);
C. \(\cot \left( {180^\circ - \alpha } \right) = - \cot \alpha \left( {0^\circ < \alpha < 180^\circ } \right)\).                        
D. \(\sin \left( {180^\circ - \alpha } \right) = \sin \alpha \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Hà Nội là thủ đô của Việt Nam;
B. Hình chữ nhật có hai đường chéo vuông góc với nhau;
C. 2 là số nguyên tố;
D. Hôm nay là thứ mấy?.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(AB\parallel CD\)\(AB = CD\);
B. \(AB\) trùng \(CD\)\(AB = CD\);
C. \(\overrightarrow {AB} \)\(\overrightarrow {CD} \) cùng hướng và \(AB = CD\);
D. \(\overrightarrow {AB} \)\(\overrightarrow {CD} \) ngược hướng và \(AB = CD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP