Câu hỏi:

15/11/2025 56 Lưu

Đặc điểm nào sau đây là sai đối với hình chóp tam giác đều \(S.ABC?\)

A. Đáy \(ABC\) là tam giác đều;                 

B. \(SA = SB = SC\);

C. Tam giác \(SBC\) là tam giác đều;           
D. \(\Delta SAB = \Delta SBC = \Delta SCA\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Hình chóp tam giác đều \(S.ABC\) có mặt bên là các tam giác cân nên \(\Delta SBC\) là tam giác cân.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \({x^2} + 2xy + 6x + 6y + 2{y^2} + 8 = 0\)

\[\left( {{x^2} + 2xy + {y^2}} \right) + 6\left( {x + y} \right) + {y^2} + 8 = 0\]

\[{\left( {x + y} \right)^2} + 2 \cdot \left( {x + y} \right) \cdot 3 + 9 - 1 =  - {y^2}\]

\[{\left( {x + y + 3} \right)^2} - 1 =  - {y^2}\]

\[\left( {x + y + 3 - 1} \right)\left( {x + y + 3 + 1} \right) =  - {y^2}\]

\[\left( {x + y + 2} \right)\left( {x + y + 4} \right) =  - {y^2}\]

\[\left( {x + y + 2024 - 2022} \right)\left( {x + y + 2024 - 2020} \right) =  - {y^2}\]

\[\left( {P - 2022} \right)\left( {P - 2020} \right) =  - {y^2}\]

Mà \({y^2} \ge 0\) với mọi \(y\) nên \( - {y^2} \le 0\) với mọi \(y\)

Do đó \[\left( {P - 2022} \right)\left( {P - 2020} \right) \le 0\] \(\left( * \right)\)

Lại có \(\left( {P - 2020} \right) - 2 < P - 2020\) hay \(P - 2022 < P - 2020\)

Suy ra \(\left( * \right)\) xảy ra khi \(P - 2022 \le 0 \le P - 2020\)

Nên \(2020 \le P \le 2022\)

Vậy GTLN của \(P\) bằng 2022 khi \(\left\{ \begin{array}{l}x + y + 2 = 0\\ - {y^2} = 0\end{array} \right.\), tức \(\left\{ \begin{array}{l}x =  - 2\\y = 0\end{array} \right.\);

GTNN của \(P\) bằng 2020 khi \(\left\{ \begin{array}{l}x + y + 4 = 0\\ - {y^2} = 0\end{array} \right.\), tức \(\left\{ \begin{array}{l}x =  - 4\\y = 0\end{array} \right.\).

Lời giải

) Do \(AC\) là tia phân giác \(\widehat {BAD}\) nên ta có \(\widehat {BAD} = 2\widehat {DAC} = 2 \cdot 40^\circ  = 80^\circ \)

Xét tứ giác \(ABCD\) có: \[\widehat {BAD} + \widehat {B\,} + \widehat {BCD} + \widehat {D\,} = 360^\circ \]

Suy ra \[\widehat {BCD} = 360^\circ  - \left( {\widehat {BAD} + \widehat {B\,} + \widehat {D\,}} \right) = 360^\circ  - \left( {80^\circ  + 90^\circ  + 90^\circ } \right) = 100^\circ \].

b) Xét \(\Delta ABC\) vuông tại \(B\), theo định lí Pythagore ta có:

\(A{C^2} = A{B^2} + B{C^2} = {7,66^2} + {6,43^2} = 100,0205\)

Suy ra \(AC = \sqrt {100,0205}  \approx 10,0\) m.

Khi đó vận động viên cần bơi với vận tốc là \(\frac{{10,0}}{{20}} = 0,5\) (m/s).

Câu 4

A. \({x^2} + 16\);     
B. \({x^2} + 8x + 16\); 
C. \({x^2} - 4x\);        
D. \({x^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(7xy\left( {2x - 3y + 4xy} \right)\);        

B. \(xy\left( {14x - 21y + 28xy} \right)\);

C. \(7{x^2}y\left( {2 - 3y + 4xy} \right)\);     
D. \(7x{y^2}\left( {2x - 3y + 4x} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{1}{x}\);        
B. \(x\);                 
C. \(\frac{0}{x}\);         
D. \(\frac{x}{0}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP