(1 điểm) Cho tứ giác \(ABCD\), hai điểm \(M,\,N\) thỏa mãn \[2\overrightarrow {MB} + \overrightarrow {MA} = \overrightarrow 0 \], \[2\overrightarrow {NC} + \overrightarrow {ND} = \overrightarrow 0 \] và \[\frac{{AD}}{{BC}} = x\]. Tính \[\frac{{\cos \widehat {DBC}}}{{\cos \widehat {ADB}}}\] theo \(x\) để \[MN \bot BD\].
(1 điểm) Cho tứ giác \(ABCD\), hai điểm \(M,\,N\) thỏa mãn \[2\overrightarrow {MB} + \overrightarrow {MA} = \overrightarrow 0 \], \[2\overrightarrow {NC} + \overrightarrow {ND} = \overrightarrow 0 \] và \[\frac{{AD}}{{BC}} = x\]. Tính \[\frac{{\cos \widehat {DBC}}}{{\cos \widehat {ADB}}}\] theo \(x\) để \[MN \bot BD\].
Quảng cáo
Trả lời:

Ta có biểu diễn
\[\overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AN} = \frac{2}{3}\overrightarrow {BA} + \overrightarrow {AN} = \frac{2}{3}\left( {\overrightarrow {BN} + \overrightarrow {NA} } \right) + \overrightarrow {AN} = \frac{2}{3}\overrightarrow {BN} + \frac{1}{3}\overrightarrow {AN} \]
\[ = \frac{2}{3}\left( {\overrightarrow {BC} + \overrightarrow {CN} } \right) + \frac{1}{3}\left( {\overrightarrow {AD} + \overrightarrow {DN} } \right) = \frac{2}{3}\overrightarrow {BC} + \frac{1}{3}\overrightarrow {AD} \]
Vậy \[\overrightarrow {MN} = \frac{2}{3}\overrightarrow {BC} + \frac{1}{3}\overrightarrow {AD} \].
Do đó, \[MN \bot BD \Leftrightarrow \left( {2\overrightarrow {BC} + \overrightarrow {AD} } \right) \cdot \overrightarrow {BD} = 0 \Leftrightarrow 2BC \cdot \cos \widehat {DBC} + AD \cdot \cos \widehat {ADB} = 0\]
Suy ra \[\frac{{\cos \widehat {DBC}}}{{\cos \widehat {ADB}}} = - \frac{{AD}}{{2BC}} = - \frac{x}{2}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
Hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \) vuông góc với nhau nên \(\overrightarrow u \cdot \overrightarrow v = 0\).
\( \Leftrightarrow \left( {\frac{2}{5}\overrightarrow a - 3\overrightarrow b } \right) \cdot \left( {\overrightarrow a + \overrightarrow b } \right) = 0\)\( \Leftrightarrow \frac{2}{5}{\overrightarrow a ^2} + \frac{2}{5}\overrightarrow a \cdot \overrightarrow b - 3\overrightarrow a \cdot \overrightarrow b - 3{\overrightarrow b ^2} = 0\)
\( \Leftrightarrow \frac{2}{5}{\left| {\overrightarrow a } \right|^2} - \frac{{13}}{5}\overrightarrow a \cdot \overrightarrow b - 3{\left| {\overrightarrow b } \right|^2} = 0\)\( \Leftrightarrow \overrightarrow a \cdot \overrightarrow b = - 1 \Leftrightarrow \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \alpha = - 1\)\( \Leftrightarrow \cos \alpha = - 1\)
Do đó, \(\alpha = 180^\circ \).
Lời giải
Gọi số sản phẩm loại \(A\) cần sản xuất là \(x\); số sản phẩm loại \(B\) cần sản xuất là \(y\)
(\(x,y \ge 0\)).
Số máy nhóm I cần sử dụng là: \(3x + 3y\).
Số máy nhóm II cần sử dụng là: \(2y\).
Số máy nhóm III cần sử dụng là: \(2x + 4y\).
Lãi suất thu được là: \(F(x;y) = 40x + 50y\) (nghìn đồng).
Bài toán trở thành:
Tìm \(x,y\) thỏa mãn hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{x \ge 0}\\{0 \le y \le 2}\\{x + y \le 5}\\{x + 2y \le 6}\end{array}} \right.\) sao cho \(F(x;y) = 40x + 50y\) lớn nhất.
Vẽ các đường thẳng \(\left( {{d_1}} \right):y = 2,\left( {{d_2}} \right):x + y = 5,\left( {{d_3}} \right):x + 2y = 6\). Ta có miền nghiệm của bất phương trình là miền ngũ giác \(EABCD\) với \(E\left( {0;\,0} \right),\,A\left( {0;\,2} \right)\), \(B\left( {2;\,2} \right)\), \(C\left( {4;\,\,1} \right)\), \(D\left( {5;\,0} \right)\).

Ta có \(F(0;\,\,0) = 0\), \(F(0;\,\,2) = 100\),\(F(2;\,\,2) = 180\),\(F(4;\,\,1) = 210\), \(F(5;\,\,0) = 200\).
Vì\(F(x;y) = 40x + 50y\) đạt giá trị lớn nhất khi \(x = 4;y = 1\) nên phương án sản xuất 4 sản phẩm loại \(A\) và 1 sản phẩm loại \(B\) sẽ có lãi cao nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
