Câu hỏi:

16/11/2025 11 Lưu

(1 điểm) Cho tứ giác \(ABCD\), hai điểm \(M,\,N\) thỏa mãn \[2\overrightarrow {MB} + \overrightarrow {MA} = \overrightarrow 0 \], \[2\overrightarrow {NC} + \overrightarrow {ND} = \overrightarrow 0 \]\[\frac{{AD}}{{BC}} = x\]. Tính \[\frac{{\cos \widehat {DBC}}}{{\cos \widehat {ADB}}}\] theo \(x\) để \[MN \bot BD\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho tứ giác \(ABCD\), hai điểm \(M,\, (ảnh 1)

Ta có biểu diễn

\[\overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AN} = \frac{2}{3}\overrightarrow {BA} + \overrightarrow {AN} = \frac{2}{3}\left( {\overrightarrow {BN} + \overrightarrow {NA} } \right) + \overrightarrow {AN} = \frac{2}{3}\overrightarrow {BN} + \frac{1}{3}\overrightarrow {AN} \]

\[ = \frac{2}{3}\left( {\overrightarrow {BC} + \overrightarrow {CN} } \right) + \frac{1}{3}\left( {\overrightarrow {AD} + \overrightarrow {DN} } \right) = \frac{2}{3}\overrightarrow {BC} + \frac{1}{3}\overrightarrow {AD} \]

Vậy \[\overrightarrow {MN} = \frac{2}{3}\overrightarrow {BC} + \frac{1}{3}\overrightarrow {AD} \].

Do đó, \[MN \bot BD \Leftrightarrow \left( {2\overrightarrow {BC} + \overrightarrow {AD} } \right) \cdot \overrightarrow {BD} = 0 \Leftrightarrow 2BC \cdot \cos \widehat {DBC} + AD \cdot \cos \widehat {ADB} = 0\]

Suy ra \[\frac{{\cos \widehat {DBC}}}{{\cos \widehat {ADB}}} = - \frac{{AD}}{{2BC}} = - \frac{x}{2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Hai vectơ \(\overrightarrow u \)\(\overrightarrow v \) vuông góc với nhau nên \(\overrightarrow u \cdot \overrightarrow v = 0\).

\( \Leftrightarrow \left( {\frac{2}{5}\overrightarrow a - 3\overrightarrow b } \right) \cdot \left( {\overrightarrow a + \overrightarrow b } \right) = 0\)\( \Leftrightarrow \frac{2}{5}{\overrightarrow a ^2} + \frac{2}{5}\overrightarrow a \cdot \overrightarrow b - 3\overrightarrow a \cdot \overrightarrow b - 3{\overrightarrow b ^2} = 0\)

\( \Leftrightarrow \frac{2}{5}{\left| {\overrightarrow a } \right|^2} - \frac{{13}}{5}\overrightarrow a \cdot \overrightarrow b - 3{\left| {\overrightarrow b } \right|^2} = 0\)\( \Leftrightarrow \overrightarrow a \cdot \overrightarrow b = - 1 \Leftrightarrow \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \alpha = - 1\)\( \Leftrightarrow \cos \alpha = - 1\)

Do đó, \(\alpha = 180^\circ \).

Lời giải

Gọi số sản phẩm loại \(A\) cần sản xuất là \(x\); số sản phẩm loại \(B\) cần sản xuất là \(y\)

(\(x,y \ge 0\)).

Số máy nhóm I cần sử dụng là: \(3x + 3y\).

Số máy nhóm II cần sử dụng là: \(2y\).

Số máy nhóm III cần sử dụng là: \(2x + 4y\).

Lãi suất thu được là: \(F(x;y) = 40x + 50y\) (nghìn đồng).    

Bài toán trở thành:

Tìm \(x,y\) thỏa mãn hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{x \ge 0}\\{0 \le y \le 2}\\{x + y \le 5}\\{x + 2y \le 6}\end{array}} \right.\) sao cho \(F(x;y) = 40x + 50y\) lớn nhất.

Vẽ các đường thẳng \(\left( {{d_1}} \right):y = 2,\left( {{d_2}} \right):x + y = 5,\left( {{d_3}} \right):x + 2y = 6\). Ta có miền nghiệm của bất phương trình là miền ngũ giác \(EABCD\) với \(E\left( {0;\,0} \right),\,A\left( {0;\,2} \right)\), \(B\left( {2;\,2} \right)\), \(C\left( {4;\,\,1} \right)\), \(D\left( {5;\,0} \right)\).

Đáp án đúng là: B (ảnh 1)

Ta có \(F(0;\,\,0) = 0\), \(F(0;\,\,2) = 100\),\(F(2;\,\,2) = 180\),\(F(4;\,\,1) = 210\), \(F(5;\,\,0) = 200\).

\(F(x;y) = 40x + 50y\) đạt giá trị lớn nhất khi \(x = 4;y = 1\) nên phương án sản xuất 4 sản phẩm loại \(A\) và 1 sản phẩm loại \(B\) sẽ có lãi cao nhất.

Câu 3

Hai vectơ \(\overrightarrow a \)\(\overrightarrow b \) (\(\overrightarrow b \) khác \(\overrightarrow 0 \)) cùng phương khi và chỉ khi có một số \(k\) sao cho 

A. \(\overrightarrow a \ne k\overrightarrow b \); 
B. \(\overrightarrow a = k\overrightarrow b \);     
C. \(\overrightarrow a + \overrightarrow b = k\);     
D. \(\overrightarrow a - \overrightarrow b = k\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Mệnh đề “\(\exists x \in \mathbb{N},\,{x^2} = 10\)” khẳng định rằng

A. Bình phương của một số tự nhiên bằng 10;
B. Bình phương của một số \(x\) bằng 10;
C. Chỉ có một số tự nhiên mà bình phương của nó bằng 10;
D. Có ít nhất một số tự nhiên mà bình phương của nó bằng 10.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{\sqrt 2 }}{4}AB \cdot AC\);           
  B. \(\frac{{\sqrt 3 }}{2}BC \cdot AC\);                  
C. \( - \frac{1}{2}AB \cdot AC\);                                 
D. \(\frac{1}{2}AB \cdot AC\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\frac{a}{{\sin A}} = 2R\,\];                         
B. \[\sin A = \frac{a}{{2R}}\,\];      
C. \[b\sin B = 2R\,\];      
D.\[\sin C = \frac{{c\sin A}}{a}\,\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\overrightarrow {AB} = 3\overrightarrow {AC} \); 
B. \(\overrightarrow {AB} = - \frac{1}{3}\overrightarrow {AC} \);                       
C. \(\overrightarrow {BC} = \frac{3}{4}\overrightarrow {AC} \);                
D. \(\overrightarrow {BC} = - 3\overrightarrow {AB} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP