Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 4}}{{x - 2}}\;\;\;\;\;\;{\rm{khi}}\;x > 2\\ax + 2024\;{\rm{khi}}\;x \le 2\end{array} \right.\).
\(f\left( 2 \right) = 0\).
\(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 4\).
\(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = - 4\).
\(a = - 1010\) thì tồn tại \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\).
Quảng cáo
Trả lời:
a) \(f\left( 2 \right) = 2a + 2024\).
b) \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} - 4}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \left( {x + 2} \right) = 4\).
c) \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {ax + 2024} \right) = 2a + 2024\).
d) Để tồn tại \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\) thì \(2a + 2024 = 4 \Leftrightarrow a = - 1010\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có cạnh của hình vuông thứ nhất là \(\frac{1}{2}\) nên diện tích \({S_1} = \frac{1}{4}\).
Cạnh hình vuông thứ hai là \(\frac{1}{4}\) nên diện tích \({S_2} = \frac{1}{{16}}\),…
Cứ tiếp tục như vậy thì ta có được \({S_1};\,{S_2};\,{S_3};...\) lập thành cấp số nhân lùi vô hạn có \({S_1} = \frac{1}{4}\), \(q = \frac{1}{4}\) nên ta có tổng diện tích chuột Mickey cần tô màu là \(S = {S_1} + {S_2} + {S_3} + ... = \frac{1}{4} \cdot \frac{1}{{1 - \frac{1}{4}}} = \frac{1}{3}\) (đvdt).
Lời giải
Ta có \(\overline C \left( x \right) = \frac{{C\left( x \right)}}{x}\).
Khi đó \(\mathop {\lim }\limits_{x \to + \infty } \overline C \left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 55}}{x} = \mathop {\lim }\limits_{x \to + \infty } \left( {2 + \frac{{55}}{x}} \right) = 2\).
Trả lời: 2.
Câu 3
\(S = 2\).
\(S = \frac{1}{2}\).
\(S = 3\).
\(S = \frac{1}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(3\).
\(7\).
\(1\).
\( - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
