Câu hỏi:

16/11/2025 6 Lưu

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 4}}{{x - 2}}\;\;\;\;\;\;{\rm{khi}}\;x > 2\\ax + 2024\;{\rm{khi}}\;x \le 2\end{array} \right.\).

\(f\left( 2 \right) = 0\).

\(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 4\).

\(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = - 4\).

\(a = - 1010\) thì tồn tại \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(f\left( 2 \right) = 2a + 2024\).

b) \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} - 4}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \left( {x + 2} \right) = 4\).

c) \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {ax + 2024} \right) = 2a + 2024\).

d) Để tồn tại \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\) thì \(2a + 2024 = 4 \Leftrightarrow a = - 1010\).

Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có cạnh của hình vuông thứ nhất là \(\frac{1}{2}\) nên diện tích \({S_1} = \frac{1}{4}\).

Cạnh hình vuông thứ hai là \(\frac{1}{4}\) nên diện tích \({S_2} = \frac{1}{{16}}\),…

Cứ tiếp tục như vậy thì ta có được \({S_1};\,{S_2};\,{S_3};...\) lập thành cấp số nhân lùi vô hạn có \({S_1} = \frac{1}{4}\), \(q = \frac{1}{4}\) nên ta có tổng diện tích chuột Mickey cần tô màu là \(S = {S_1} + {S_2} + {S_3} + ... = \frac{1}{4} \cdot \frac{1}{{1 - \frac{1}{4}}} = \frac{1}{3}\) (đvdt).

Lời giải

Ta có \(\overline C \left( x \right) = \frac{{C\left( x \right)}}{x}\).

Khi đó \(\mathop {\lim }\limits_{x \to + \infty } \overline C \left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 55}}{x} = \mathop {\lim }\limits_{x \to + \infty } \left( {2 + \frac{{55}}{x}} \right) = 2\).

Trả lời: 2.

Câu 3

\(S = 2\).

\(S = \frac{1}{2}\).

\(S = 3\).

\(S = \frac{1}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP