Câu hỏi:

16/11/2025 11 Lưu

Cho phí (đơn vị: triệu đồng) để sản xuất \(x\) sản phẩm của một công ty được xác định bởi hàm số \(C\left( x \right) = 2x + 55\). Gọi \(\overline C \left( x \right)\) là chi phí trung bình để sản xuất một sản phẩm. Khi số lượng sản phẩm sản xuất được càng lớn thì chi phí trung bình để sản xuất một sản phẩm càng gần với số tiền nào (đơn vị triệu đồng)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\overline C \left( x \right) = \frac{{C\left( x \right)}}{x}\).

Khi đó \(\mathop {\lim }\limits_{x \to + \infty } \overline C \left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 55}}{x} = \mathop {\lim }\limits_{x \to + \infty } \left( {2 + \frac{{55}}{x}} \right) = 2\).

Trả lời: 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có cạnh của hình vuông thứ nhất là \(\frac{1}{2}\) nên diện tích \({S_1} = \frac{1}{4}\).

Cạnh hình vuông thứ hai là \(\frac{1}{4}\) nên diện tích \({S_2} = \frac{1}{{16}}\),…

Cứ tiếp tục như vậy thì ta có được \({S_1};\,{S_2};\,{S_3};...\) lập thành cấp số nhân lùi vô hạn có \({S_1} = \frac{1}{4}\), \(q = \frac{1}{4}\) nên ta có tổng diện tích chuột Mickey cần tô màu là \(S = {S_1} + {S_2} + {S_3} + ... = \frac{1}{4} \cdot \frac{1}{{1 - \frac{1}{4}}} = \frac{1}{3}\) (đvdt).

Câu 2

\(S = 2\).

\(S = \frac{1}{2}\).

\(S = 3\).

\(S = \frac{1}{3}\).

Lời giải

Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = 1\) và công bội \(q = \frac{1}{2}\) nên

\(S = 1 + \frac{1}{2} + \frac{1}{4} + ... + {\left( {\frac{1}{2}} \right)^n} + ... = \frac{1}{{1 - \frac{1}{2}}} = 2\). Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP