Một số tự nhiên lẻ có hai chữ số chia hết cho 5. Hiệu của số đó và chữ số hàng chục bằng 86. Tìm số đã cho.
Quảng cáo
Trả lời:
Đáp án: 95.
Gọi \(x\) là chữ số hàng chục của số cần tìm \((x \in \mathbb{N}\) và \(0 < x \le 9).\)
Vì số tự nhiên cần tìm là số chia hết cho 5 nên chữ số hàng đơn vị có thể là 0 hoặc 5.
Mà số tự nhiên này là số lẻ nên chữ số hàng đơn vị của nó chỉ có thể là 5.
Độ lớn của số cần tìm là: \(\overline {x5} = 10x + 5.\)
Vì hiệu của số đó và chữ số hàng chục bằng 86 nên ta có phương trình:
\(10x + 5 - x = 86\)
\(9x = 81\)
\(x = 9\) (thỏa mãn).
Vậy số cần tìm là 95.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 120.
Đổi \(20\)phút \[ = \frac{1}{3}\] giờ.
Gọi quãng đường AB là \[x\] (km) \(\left( {x > 0} \right).\)
Thời gian đi từ A đến B là \(\frac{x}{{40}}\) (giờ).
Lúc về người đó tăng vận tốc thêm \(5\) km/h nên vận tốc lúc về của người đó là \[40 + 5 = 45\] (km/h).
Thời gian đi từ B về A là \(\frac{x}{{45}}\) (giờ).
Vì thời gian lúc về ít hơn thời gian lúc đi là \(20\) phút \[( = \frac{1}{3}\] giờ) nên ta có phương trình:
\(\frac{x}{{40}} - \frac{x}{{45}} = \frac{1}{3}\)
\(\frac{{9x}}{{360}} - \frac{{8x}}{{360}} = \frac{{120}}{{360}}\)
\(9x - 8x = 120\)
\(x = 120\) (thỏa mãn).
Vậy quãng đường AB là \(120\) km.
Câu 2
Lời giải
Đáp án đúng là: D
Ta có: \[5x-\left( {6-x} \right) = 12\]
\[5x-6 + x-12 = 0\]
\(6x-18 = 0.\)
Vậy ta chọn phương án D.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.