Câu hỏi:

17/11/2025 7 Lưu

(1 điểm) Cho tam giác \(ABC\)\(BC = a\), \(CA = b\), \(AB = c\)\(M\) là trung điểm của \(BC\), \(AD\) là đường phân giác trong góc \(A\). Tính \({\overrightarrow {AD} ^2}\) theo \(a\), \(b\), \(c\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(M\) là trung điểm của \(BC\), nên \(\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\).

Suy ra \({\overrightarrow {AM} ^2} = \frac{1}{4}{\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)^2} = \frac{1}{4}\left( {{{\overrightarrow {AB} }^2} + 2\overrightarrow {AB} \cdot \overrightarrow {AC} + {{\overrightarrow {AC} }^2}} \right)\)

Ta lại có: \(\overrightarrow {AB} \cdot \overrightarrow {AC} = bc \cdot \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = bc \cdot \frac{{\left( {{c^2} + {b^2} - {a^2}} \right)}}{{2bc}} = \frac{1}{2}\left( {{c^2} + {b^2} - {a^2}} \right)\)

\( \Rightarrow A{M^2} = \frac{1}{4}\left( {{c^2} + 2.\frac{1}{2}\left( {{c^2} + {b^2} - {a^2}} \right) + {b^2}} \right) = \frac{{2\left( {{b^2} + {c^2}} \right) - {a^2}}}{4}\)

Theo tính chất đường phân giác ta có: \(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} = \frac{c}{b}\).

Suy ra \(\overrightarrow {BD} = \frac{{BD}}{{DC}}\overrightarrow {DC} = \frac{b}{c}\overrightarrow {DC} \) (*)

Mặt khác \(\overrightarrow {BD} = \overrightarrow {AD} - \overrightarrow {AB} \)\(\overrightarrow {DC} = \overrightarrow {AC} - \overrightarrow {AD} \) thay vào (*) ta được

\(\overrightarrow {AD} - \overrightarrow {AB} = \frac{b}{c}\left( {\overrightarrow {AC} - \overrightarrow {AD} } \right) \Leftrightarrow \left( {b + c} \right)\overrightarrow {AD} = b\overrightarrow {AB} + c\overrightarrow {AC} \)

\( \Leftrightarrow {\left( {b + c} \right)^2}{\overrightarrow {AD} ^2} = {\left( {b\overrightarrow {AB} } \right)^2} + 2bc\overrightarrow {AB} \cdot \overrightarrow {AC} + {\left( {c\overrightarrow {AC} } \right)^2}\)

\( \Leftrightarrow {\left( {b + c} \right)^2}{\overrightarrow {AD} ^2} = {b^2}{c^2} + 2bc.\frac{1}{2}\left( {{c^2} + {b^2} - {a^2}} \right) + {c^2}{b^2}\)

\( \Leftrightarrow {\overrightarrow {AD} ^2} = \frac{{bc}}{{{{(b + c)}^2}}}\left( {b + c - a} \right)\left( {b + c + a} \right)\).

Vậy \({\overrightarrow {AD} ^2} = \frac{{bc}}{{{{(b + c)}^2}}}\left( {b + c - a} \right)\left( {b + c + a} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Tồn tại một số nguyên \(x\) để \(x\) chia hết cho 5;
B. Mọi số nguyên \(x\) chia hết cho 5;
C. Tồn tại một số nguyên \(x\) để \(x\) không chia hết cho 5;
D. Mọi số nguyên \(x\) không chia hết cho 5.

Lời giải

Đáp án đúng là: A

Mệnh đề “\(\exists x \in \mathbb{Z},x\,\, \vdots \,\,5\)” được diễn tả bằng lời như sau:

Tồn tại một số nguyên \(x\) để \(x\) chia hết cho 5.

Câu 2

A. \(\frac{{25\sqrt 2 }}{2}\);                               
B. \( - \frac{{25\sqrt 2 }}{2}\);                                      
C. \(\frac{{5\sqrt 2 }}{2}\);                                      
D. \(25\sqrt 2 \).

Lời giải

Đáp án đúng là: A

Xét tam giác \(ABC\) cân tại \(C\) cạnh \(AC = 5\,\,{\rm{cm}}\), \(\widehat {ACB} = 45^\circ \).

Do đó,\(BC = AC = 5\,\,\,{\rm{cm}} \Rightarrow \left| {\overrightarrow {CB} } \right| = \left| {\overrightarrow {CA} } \right| = 5\,\,{\rm{cm}}\).

Ta có: \(\left( {\overrightarrow {CB} ,\overrightarrow {CA} } \right) = \widehat {ACB} = 45^\circ \Rightarrow \cos \left( {\overrightarrow {CB} ,\overrightarrow {CA} } \right) = \cos 45^\circ = \frac{{\sqrt 2 }}{2}\).

Vậy \(\overrightarrow {CA} \cdot \overrightarrow {CB} = \left| {\overrightarrow {CA} } \right| \cdot \left| {\overrightarrow {CB} } \right| \cdot \cos \left( {\overrightarrow {CA} ,\overrightarrow {CB} } \right) = 5 \cdot 5 \cdot \frac{{\sqrt 2 }}{2} = \frac{{25\sqrt 2 }}{2}\).

Câu 4

A. \(\left( {3;\,2} \right)\);                                   
B. \(\left( {1;\,\,11} \right)\);     
C. \(\left( { - 1; - 14} \right)\);                                           
D. \(\left( { - 2; - 20} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\cot \left( {90^\circ - \alpha } \right)\];    
B. \[\cot \left( {180^\circ - \alpha } \right)\];                           
C. \[\tan \left( { - \alpha } \right)\];   
D. \[1 - \cot \left( \alpha \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow {AB} = \overrightarrow {AM} \);                                                                         
B. \(\overrightarrow {AB} = \frac{4}{5}\overrightarrow {AM} \);                                 
C. \(\overrightarrow {AM} = 4\overrightarrow {BM} \);                                                                         
D. \(\overrightarrow {BA} = - 5\overrightarrow {AM} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(55^\circ \);           
B. \(54^\circ \);               
C. \(56^\circ \);                                 
D. \(57^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP