Cho tứ giác \(ABCD,\) trong đó có \(\widehat {A\,\,} + \widehat {B\,} = 140^\circ \). Tính tổng số đo góc ngoài tại đỉnh \(C\) và \(D\) của tứ giác.
Cho tứ giác \(ABCD,\) trong đó có \(\widehat {A\,\,} + \widehat {B\,} = 140^\circ \). Tính tổng số đo góc ngoài tại đỉnh \(C\) và \(D\) của tứ giác.
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 8 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Xét tứ giác \(ABCD\) có \(\widehat {A\,\,} + \widehat {B\,} + \widehat {C\,} + \widehat {D\,} = 360^\circ \)
Suy ra \(\widehat {C\,} + \widehat {D\,} = 360^\circ - \left( {\widehat {A\,\,} + \widehat {B\,}} \right)\)
Hay \(\widehat {C\,} + \widehat {D\,} = 360^\circ - 140^\circ = 220^\circ \)
Do đó tổng số đo góc ngoài tại đỉnh \(C\) và \(D\) là:
\[\left( {180^\circ - \widehat {C\,}} \right) + \left( {180^\circ - \widehat {D\,}} \right) = 360^\circ - \left( {\widehat {C\,} + \widehat {D\,}} \right) = 360^\circ - 220^\circ = 140^\circ .\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Ta có: \({x^3} + 12{x^2} + 48x + 64 = {\left( {x + 4} \right)^3}\). Vậy \(a = 4.\)
Câu 2
Lời giải
Đáp án đúng là: B
Thay \(x = 4,y = - 5,z = - 2\) vào biểu thức \(A = {x^4} + 4{x^2}y - 6z\) ta được:
\(A = {4^4} + {4.4^2}.\left( { - 5} \right) - 6.\left( { - 2} \right) = 256 - 320 + 12 = - 52\) .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
