Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Góc ngoài tại đỉnh \(B\) có số đo bằng \(70^\circ \) nên góc trong tại đỉnh \(B\) có số đo bằng \(180^\circ  - 70^\circ  = 110^\circ \)

Xét tứ giác \(ABCD,\) ta có: \(\widehat {A\,\,} + \widehat {B\,} + \widehat {C\,} + \widehat {D\,} = 360^\circ \) (định lí tổng các góc của một tứ giác)

Do đó \(3x + 110^\circ  + x + 90^\circ  = 360^\circ \)

Suy ra \(4x = 160^\circ \) nên \(x = 40^\circ \)

Vậy \(x = 40^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Áp dụng định lí Pythagore vào tam giác \(ABH\) vuông tại \(H\) ta có:

\(A{B^2} = A{H^2} + B{H^2}\)

Suy ra \(A{H^2} = A{B^2} - B{H^2} = {3,7^2} - {1,2^2} = 12,25\)

Do đó \(AH = \sqrt {12,25}  = 3,5\;\left( {\rm{m}} \right)\)

Ta có \(\frac{{AH}}{{BH}} = \frac{{3,5}}{{1,2}} \approx 2,9\)

Mà \(2,9 > 2,2\) nên khoảng cách đặt thang cách chân tường là không an toàn.

Câu 2

Cho ba số thực \(a,b,c\) khác 0 thỏa mãn \({a^3} + {b^3} + {c^3} = 3abc.\) Tính giá trị của biểu thức \(A = \left( {1 + \frac{a}{b}} \right)\left( {1 + \frac{b}{c}} \right)\left( {1 + \frac{c}{a}} \right).\)

Lời giải

Ta có: \[{a^3} + {b^3} + {c^3} - 3abc\]

\[ = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right) + {c^3} - 3abc\]

\[ = {\left( {a + b} \right)^3} + {c^3} - 3ab\left( {a + b} \right) - 3abc\]

\[ = {\left( {a + b} \right)^3} + {c^3} - 3ab\left( {a + b + c} \right)\]

\[ = \left( {a + b + c} \right)\left[ {{{\left( {a + b} \right)}^2} - \left( {a + b} \right)c + {c^2}} \right] - 3ab\left( {a + b + c} \right)\]

\[ = \left( {a + b + c} \right)\left( {{a^2} + 2ab + {b^2} - ca - bc + {c^2} - 3ab} \right)\]

\[ = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\]

Mà theo bài, \[{a^3} + {b^3} + {c^3} = 3abc\] nên \[{a^3} + {b^3} + {c^3} - 3abc = 0\]

Do đó \[\left[ \begin{array}{l}a + b + c = 0\\{a^2} + {b^2} + {c^2} - ab - bc - ca = 0\,\,\,\left( * \right)\end{array} \right.\]

Mặt khác \(2\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) = 2{a^2} + 2{b^2} + 2{c^2} - 2ab - 2bc - 2ca\)

\( = {\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {c - a} \right)^2}\)

Do đó \[{a^2} + {b^2} + {c^2} - ab - bc - ca = \frac{1}{2}\left[ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right] \ge 0\] với mọi \(a,b,c \in \mathbb{R}\)

Nên để \[\left( * \right)\] xảy ra thì \[\left\{ \begin{array}{l}{\left( {a - b} \right)^2} = 0\\{\left( {b - c} \right)^2} = 0\\{\left( {c - a} \right)^2} = 0\end{array} \right.\], hay \[\left\{ \begin{array}{l}a - b = 0\\b - c = 0\\c - a = 0\end{array} \right.\] tức \(a = b = c\).

⦁ Trường hợp 1: \[a + b + c = 0\]

Suy ra \(a + b =  - c;\,\,b + c =  - a &  & ;\,\,c + a =  - b\)

Khi đó \(A = \left( {1 + \frac{a}{b}} \right)\left( {1 + \frac{b}{c}} \right)\left( {1 + \frac{c}{a}} \right) = \frac{{a + b}}{b}.\frac{{b + c}}{c}.\frac{{c + a}}{a} = \frac{{ - c}}{b}.\frac{{ - a}}{c}.\frac{{ - b}}{a} =  - 1.\)

⦁ Trường hợp 2: \(a = b = c\) thì ta được \(A = \left( {1 + \frac{a}{b}} \right)\left( {1 + \frac{b}{c}} \right)\left( {1 + \frac{c}{a}} \right) = 2 \cdot 2 \cdot 2 = 8\).

Câu 3

A. 4;                  
B. 6;                           
C. 8;                            
D. 10.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(a\) và \(6\);         
B. \(1\) và 10;             
C. \(a\) và 10;               
D. 1 và 6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP