Một ngân hàng phân loại các đơn xin vay vốn thành hai nhóm: “Rủi ro cao” và “Rủi ro thấp”. Dựa trên dữ liệu lịch sử, ngân hàng ước tính rằng 30% tổng số đơn xin vay thuộc nhóm rủi ro cao. Thực tế cho thấy tỉ lệ các khoản vay bị vỡ nợ (không trả được) trong nhóm rủi ro cao là 15%, trong khi tỉ lệ này ở nhóm rủi ro thấp chỉ là 2%. Ngân hàng chọn ngẫu nhiên một hồ sơ vay vốn đã được duyệt.
Gọi C là biến cố “Hồ sơ vay vốn thuộc nhóm rủi ro cao”;
V là biến cố “Khoản vay bị vỡ nợ”.
Một ngân hàng phân loại các đơn xin vay vốn thành hai nhóm: “Rủi ro cao” và “Rủi ro thấp”. Dựa trên dữ liệu lịch sử, ngân hàng ước tính rằng 30% tổng số đơn xin vay thuộc nhóm rủi ro cao. Thực tế cho thấy tỉ lệ các khoản vay bị vỡ nợ (không trả được) trong nhóm rủi ro cao là 15%, trong khi tỉ lệ này ở nhóm rủi ro thấp chỉ là 2%. Ngân hàng chọn ngẫu nhiên một hồ sơ vay vốn đã được duyệt.
Gọi C là biến cố “Hồ sơ vay vốn thuộc nhóm rủi ro cao”;
V là biến cố “Khoản vay bị vỡ nợ”.
Quảng cáo
Trả lời:
a) Theo đề .\(P\left( C \right) = \frac{3}{{10}};P\left( {\overline C } \right) = \frac{7}{{10}}\)
b) \(P\left( {V|C} \right) = 0,15;P\left( {V|\overline C } \right) = 0,02\).
c) Ta có \(P\left( V \right) = P\left( C \right).P\left( {V|C} \right) + P\left( {\overline C } \right).P\left( {V|\overline C } \right)\)\( = \frac{3}{{10}}.0,15 + \frac{7}{{10}}.0,02 \approx 0,059\).
d) Ta có \[P\left( {C|V} \right) = \frac{{P\left( C \right).P\left( {V|C} \right)}}{{P\left( V \right)}} = \frac{{\frac{3}{{10}}.0,15}}{{0,059}} \approx 76\% \].
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(\frac{9}{{16}}\).
Lời giải
Ta có \(P\left( {A|B} \right) = \frac{{45}}{{80}} = \frac{9}{{16}}\).
Lời giải
Gọi A là biến cố “Lấy được viên bi xanh ở lần thứ nhất”;
B là biến cố “Lấy được viên bi trắng ở lần thứ hai”.
Ta có \(P\left( A \right) = \frac{{30}}{{50}} = \frac{3}{5};P\left( {B|A} \right) = \frac{{20}}{{49}}\).
Khi đó \(P\left( {AB} \right) = P\left( A \right).P\left( {B|A} \right) = \frac{3}{5}.\frac{{20}}{{49}} = \frac{{12}}{{49}} \approx 0,24\).
Trả lời: 0,24.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\frac{3}{{10}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.