Câu hỏi:

18/11/2025 29 Lưu

Người ta tiến hành phỏng vấn 40 khách hàng về một mẫu áo chống nắng. Điều tra viên yêu cầu cho điểm mẫu áo đó với thang điểm 100. Kết quả được tổng hợp trong bảng dưới đây:

Nhóm

\(\left[ {50;60} \right)\)

\(\left[ {60;70} \right)\)

\(\left[ {70;80} \right)\)

\(\left[ {80;90} \right)\)

\(\left[ {90;100} \right)\)

Tần số

5

18

40

26

8

Số điểm đại diện cho nhóm thứ 4 là:

A. 55.

B. 65.   
C. 75.
D. 85.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số điểm đại diện cho nhóm thứ 4 là: \(\frac{{80 + 90}}{2} = 85\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Cỡ mẫu của mẫu số liệu trên bằng 40.

Đúng
Sai

b) Giá trị đại diện của nhóm \(\left[ {30;40} \right)\) là 35.

Đúng
Sai

c) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là \({Q_1} = 48\).

Đúng
Sai
d) \({Q_3} - {Q_1} = 14\).
Đúng
Sai

Lời giải

a) Cỡ mẫu \(n = 2 + 10 + 16 + 8 + 2 + 2 = 40\).

b) Giá trị đại diện của nhóm \(\left[ {30;40} \right)\) là \(\frac{{30 + 40}}{2} = 35\).

c) Gọi \({x_1};{x_2};...;{x_{40}}\) là 40 giá trị được sắp theo thứ tự không giảm.

Tứ phân vị thứ nhất là \(\frac{{{x_{10}} + {x_{11}}}}{2}\) mà \({x_{10}};{x_{11}} \in \left[ {40;50} \right)\) nên nhóm này chứa tứ phân vị thứ nhất.

Ta có \({Q_1} = 40 + \frac{{\frac{{40}}{4} - 2}}{{10}} \cdot 10 = 48\).

d) Tứ phân vị thứ ba là \(\frac{{{x_{30}} + {x_{31}}}}{2}\) mà \({x_{30}};{x_{31}} \in \left[ {60;70} \right)\) nên nhóm này chứa tứ phân vị thứ ba.

Ta có \({Q_3} = 60 + \frac{{\frac{{3 \cdot 40}}{4} - 28}}{8} \cdot 10 = 62,5\).

Suy ra \({Q_3} - {Q_1} = 62,5 - 48 = 14,5\).

Đáp án: a) Đúng;   b) Đúng;   c) Đúng;   d) Sai.

Lời giải

a) Do số bệnh nhân đến khám là số nguyên nên ta hiệu chỉnh lại như sau:

Số bệnh nhân

\(\left[ {0,5;10,5} \right)\)

\(\left[ {10,5;20,5} \right)\)

\(\left[ {20,5;30,5} \right)\)

\(\left[ {30,5;40,5} \right)\)

\(\left[ {40,5;50,5} \right)\)

Số ngày

7

8

7

6

2

Tổng số ngày khám là \(7 + 8 + 7 + 6 + 2 = 30\).

Gọi \({x_1};{x_2};...;{x_{30}}\) là số bệnh nhân đến khám mỗi ngày xếp theo thứ tự không giảm.

Tứ phân vị thứ nhất là \({x_8} \in \left[ {10,5;20,5} \right)\).

Ta có \({Q_1} = 10,5 + \frac{{\frac{{30}}{4} - 7}}{8} \cdot 10 = 11,125\).

Tứ phân vị thứ hai là \(\frac{{{x_{15}} + {x_{16}}}}{2} \in \left[ {10,5;20,5} \right)\).

Vì \({x_{15}} \in \left[ {10,5;20,5} \right);{x_{16}} \in \left[ {20,5;30,5} \right)\) nên tứ phân vị thứ hai của mẫu số liệu là \({Q_2} = 20,5\).

Tứ phân vị thứ ba là \({x_{23}} \in \left[ {30,5;40,5} \right)\).

Ta có \({Q_3} = 30,5 + \frac{{\frac{{3 \cdot 30}}{4} - 22}}{6} \cdot 10 \approx 31,3\).

b) Vì \({Q_1};{Q_2};{Q_3}\) đều nhỏ hơn 35 nên nhận định của đề bài không hợp lí.

Câu 3

a) Số cuộc gọi trung bình mỗi ngày là 8,1.

Đúng
Sai

b) Nhóm chứa mốt là \(\left[ {5,5;8,5} \right)\).

Đúng
Sai

c) Mốt của mẫu số liệu ghép nhóm là \( \approx 7,21\).

Đúng
Sai
d) Người đó thực hiện tối đa khoảng 8 cuộc gọi mỗi ngày.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP