Cho mẫu số liệu như bảng bên dưới
Giá trị
\(\left[ {{u_1};{u_2}} \right)\)
\(\left[ {{u_2};{u_3}} \right)\)
\(\left[ {{u_3};{u_4}} \right)\)
\(\left[ {{u_4};{u_5}} \right)\)
\(\left[ {{u_5};{u_6}} \right)\)
Tần số
6
1
3
9
7
Nhóm \(\left[ {{u_1};{u_2}} \right)\) có giá trị đại diện là
Cho mẫu số liệu như bảng bên dưới
|
Giá trị |
\(\left[ {{u_1};{u_2}} \right)\) |
\(\left[ {{u_2};{u_3}} \right)\) |
\(\left[ {{u_3};{u_4}} \right)\) |
\(\left[ {{u_4};{u_5}} \right)\) |
\(\left[ {{u_5};{u_6}} \right)\) |
|
Tần số |
6 |
1 |
3 |
9 |
7 |
Nhóm \(\left[ {{u_1};{u_2}} \right)\) có giá trị đại diện là
A. \(\frac{1}{2}\left( {{u_1} + {u_2}} \right)\).
Quảng cáo
Trả lời:
Nhóm \(\left[ {{u_1};{u_2}} \right)\) có giá trị đại diện là \(\frac{1}{2}\left( {{u_1} + {u_2}} \right)\). Chọn A.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Cỡ mẫu của mẫu số liệu trên bằng 40.
b) Giá trị đại diện của nhóm \(\left[ {30;40} \right)\) là 35.
c) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là \({Q_1} = 48\).
Lời giải
a) Cỡ mẫu \(n = 2 + 10 + 16 + 8 + 2 + 2 = 40\).
b) Giá trị đại diện của nhóm \(\left[ {30;40} \right)\) là \(\frac{{30 + 40}}{2} = 35\).
c) Gọi \({x_1};{x_2};...;{x_{40}}\) là 40 giá trị được sắp theo thứ tự không giảm.
Tứ phân vị thứ nhất là \(\frac{{{x_{10}} + {x_{11}}}}{2}\) mà \({x_{10}};{x_{11}} \in \left[ {40;50} \right)\) nên nhóm này chứa tứ phân vị thứ nhất.
Ta có \({Q_1} = 40 + \frac{{\frac{{40}}{4} - 2}}{{10}} \cdot 10 = 48\).
d) Tứ phân vị thứ ba là \(\frac{{{x_{30}} + {x_{31}}}}{2}\) mà \({x_{30}};{x_{31}} \in \left[ {60;70} \right)\) nên nhóm này chứa tứ phân vị thứ ba.
Ta có \({Q_3} = 60 + \frac{{\frac{{3 \cdot 40}}{4} - 28}}{8} \cdot 10 = 62,5\).
Suy ra \({Q_3} - {Q_1} = 62,5 - 48 = 14,5\).
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Lời giải
a) Do số bệnh nhân đến khám là số nguyên nên ta hiệu chỉnh lại như sau:
|
Số bệnh nhân |
\(\left[ {0,5;10,5} \right)\) |
\(\left[ {10,5;20,5} \right)\) |
\(\left[ {20,5;30,5} \right)\) |
\(\left[ {30,5;40,5} \right)\) |
\(\left[ {40,5;50,5} \right)\) |
|
Số ngày |
7 |
8 |
7 |
6 |
2 |
Tổng số ngày khám là \(7 + 8 + 7 + 6 + 2 = 30\).
Gọi \({x_1};{x_2};...;{x_{30}}\) là số bệnh nhân đến khám mỗi ngày xếp theo thứ tự không giảm.
Tứ phân vị thứ nhất là \({x_8} \in \left[ {10,5;20,5} \right)\).
Ta có \({Q_1} = 10,5 + \frac{{\frac{{30}}{4} - 7}}{8} \cdot 10 = 11,125\).
Tứ phân vị thứ hai là \(\frac{{{x_{15}} + {x_{16}}}}{2} \in \left[ {10,5;20,5} \right)\).
Vì \({x_{15}} \in \left[ {10,5;20,5} \right);{x_{16}} \in \left[ {20,5;30,5} \right)\) nên tứ phân vị thứ hai của mẫu số liệu là \({Q_2} = 20,5\).
Tứ phân vị thứ ba là \({x_{23}} \in \left[ {30,5;40,5} \right)\).
Ta có \({Q_3} = 30,5 + \frac{{\frac{{3 \cdot 30}}{4} - 22}}{6} \cdot 10 \approx 31,3\).
b) Vì \({Q_1};{Q_2};{Q_3}\) đều nhỏ hơn 35 nên nhận định của đề bài không hợp lí.
Câu 3
a) Số cuộc gọi trung bình mỗi ngày là 8,1.
b) Nhóm chứa mốt là \(\left[ {5,5;8,5} \right)\).
c) Mốt của mẫu số liệu ghép nhóm là \( \approx 7,21\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Tứ phân vị thứ ba.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.