Câu hỏi:

18/11/2025 30 Lưu

Trong phong trào thi đua học tập chào mừng ngày nhà giáo Việt Nam tại một trường THPT. Đoàn thành niên đã tổ chức khảo sát thời gian tự học môn Toán ở nhà trong một ngày của học sinh học ban tự nhiên của 3 lớp 11A, 11B, 11C được cho ở bảng sau:

Thời gian (phút)

\(\left[ {0;10} \right)\)

\(\left[ {10;20} \right)\)

\(\left[ {20;30} \right)\)

\(\left[ {30;40} \right)\)

\(\left[ {40;50} \right)\)

\(\left[ {50;60} \right)\)

Số học sinh

10

17

30

23

20

20

a) Mẫu số liệu ghép nhóm đã cho có 6 nhóm.

Đúng
Sai

b) Số học sinh học ban tự nhiên của các lớp tham gia khảo sát là 100.

Đúng
Sai

c) Số trung bình của mẫu số liệu ghép nhóm trên bằng 36.

Đúng
Sai
d) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm trên là \({Q_3} = 45\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Thời gian (phút)

\(\left[ {0;10} \right)\)

\(\left[ {10;20} \right)\)

\(\left[ {20;30} \right)\)

\(\left[ {30;40} \right)\)

\(\left[ {40;50} \right)\)

\(\left[ {50;60} \right)\)

Giá trị đại diện

5

15

25

35

45

55

Số học sinh

10

17

30

23

20

20

a) Mẫu số liệu ghép nhóm đã cho có 6 nhóm.

b) Cỡ mẫu \(n = 10 + 17 + 30 + 23 + 20 + 20 = 120\).

c) Ta có \(\overline x  = \frac{{10 \cdot 5 + 17 \cdot 15 + 30 \cdot 25 + 23 \cdot 35 + 20 \cdot 45 + 20 \cdot 55}}{{120}} = \frac{{193}}{6}\).

d) Nhóm chứa tứ phân vị thứ 3 là \(\left[ {40;50} \right)\).

Ta có \({Q_3} = 40 + \frac{{\frac{{3 \cdot 120}}{4} - 80}}{{20}} \cdot 10 = 45\).

Đáp án: a) Đúng;   b) Sai;   c) Sai;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Cỡ mẫu của mẫu số liệu trên bằng 40.

Đúng
Sai

b) Giá trị đại diện của nhóm \(\left[ {30;40} \right)\) là 35.

Đúng
Sai

c) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là \({Q_1} = 48\).

Đúng
Sai
d) \({Q_3} - {Q_1} = 14\).
Đúng
Sai

Lời giải

a) Cỡ mẫu \(n = 2 + 10 + 16 + 8 + 2 + 2 = 40\).

b) Giá trị đại diện của nhóm \(\left[ {30;40} \right)\) là \(\frac{{30 + 40}}{2} = 35\).

c) Gọi \({x_1};{x_2};...;{x_{40}}\) là 40 giá trị được sắp theo thứ tự không giảm.

Tứ phân vị thứ nhất là \(\frac{{{x_{10}} + {x_{11}}}}{2}\) mà \({x_{10}};{x_{11}} \in \left[ {40;50} \right)\) nên nhóm này chứa tứ phân vị thứ nhất.

Ta có \({Q_1} = 40 + \frac{{\frac{{40}}{4} - 2}}{{10}} \cdot 10 = 48\).

d) Tứ phân vị thứ ba là \(\frac{{{x_{30}} + {x_{31}}}}{2}\) mà \({x_{30}};{x_{31}} \in \left[ {60;70} \right)\) nên nhóm này chứa tứ phân vị thứ ba.

Ta có \({Q_3} = 60 + \frac{{\frac{{3 \cdot 40}}{4} - 28}}{8} \cdot 10 = 62,5\).

Suy ra \({Q_3} - {Q_1} = 62,5 - 48 = 14,5\).

Đáp án: a) Đúng;   b) Đúng;   c) Đúng;   d) Sai.

Lời giải

a) Do số bệnh nhân đến khám là số nguyên nên ta hiệu chỉnh lại như sau:

Số bệnh nhân

\(\left[ {0,5;10,5} \right)\)

\(\left[ {10,5;20,5} \right)\)

\(\left[ {20,5;30,5} \right)\)

\(\left[ {30,5;40,5} \right)\)

\(\left[ {40,5;50,5} \right)\)

Số ngày

7

8

7

6

2

Tổng số ngày khám là \(7 + 8 + 7 + 6 + 2 = 30\).

Gọi \({x_1};{x_2};...;{x_{30}}\) là số bệnh nhân đến khám mỗi ngày xếp theo thứ tự không giảm.

Tứ phân vị thứ nhất là \({x_8} \in \left[ {10,5;20,5} \right)\).

Ta có \({Q_1} = 10,5 + \frac{{\frac{{30}}{4} - 7}}{8} \cdot 10 = 11,125\).

Tứ phân vị thứ hai là \(\frac{{{x_{15}} + {x_{16}}}}{2} \in \left[ {10,5;20,5} \right)\).

Vì \({x_{15}} \in \left[ {10,5;20,5} \right);{x_{16}} \in \left[ {20,5;30,5} \right)\) nên tứ phân vị thứ hai của mẫu số liệu là \({Q_2} = 20,5\).

Tứ phân vị thứ ba là \({x_{23}} \in \left[ {30,5;40,5} \right)\).

Ta có \({Q_3} = 30,5 + \frac{{\frac{{3 \cdot 30}}{4} - 22}}{6} \cdot 10 \approx 31,3\).

b) Vì \({Q_1};{Q_2};{Q_3}\) đều nhỏ hơn 35 nên nhận định của đề bài không hợp lí.

Câu 3

a) Số cuộc gọi trung bình mỗi ngày là 8,1.

Đúng
Sai

b) Nhóm chứa mốt là \(\left[ {5,5;8,5} \right)\).

Đúng
Sai

c) Mốt của mẫu số liệu ghép nhóm là \( \approx 7,21\).

Đúng
Sai
d) Người đó thực hiện tối đa khoảng 8 cuộc gọi mỗi ngày.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP