Câu hỏi:

18/11/2025 75 Lưu

Khảo sát thời gian tập thể dục trong ngày của các bạn học sinh lớp 11A thu được mẫu số liệu ghép nhóm sau:

Thời gian (phút)

\(\left[ {0;20} \right)\)

\(\left[ {20;40} \right)\)

\(\left[ {40;60} \right)\)

\(\left[ {60;80} \right)\)

\(\left[ {80;100} \right)\)

Số học sinh

9

15

8

7

6

a) Cỡ mẫu của mẫu số liệu là 44.

Đúng
Sai

b) Thời gian tập thể dục trung bình trong ngày của lớp 11A (làm tròn đến phút) là 43.

Đúng
Sai

c) 75% học sinh lớp 11A tập thể dục trong ngày ít hơn hoặc bằng 65 phút.

Đúng
Sai
d) Nếu chọn một bạn ngẫu nhiên trong lớp 11A thì thời gian tập thể dục trong ngày của bạn đó khả năng cao nhất là 30 phút.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Cỡ mẫu \(n = 9 + 15 + 8 + 7 + 6 = 45\).

b)

Thời gian (phút)

\(\left[ {0;20} \right)\)

\(\left[ {20;40} \right)\)

\(\left[ {40;60} \right)\)

\(\left[ {60;80} \right)\)

\(\left[ {80;100} \right)\)

Giá trị đại diện

10

30

50

70

90

Số học sinh

9

15

8

7

6

Ta có \(\overline x  = \frac{{10 \cdot 9 + 30 \cdot 15 + 50 \cdot 8 + 70 \cdot 7 + 90 \cdot 6}}{{45}} \approx 44\).

c) Gọi \({x_1};{x_2};...;{x_{45}}\) là thời gian tập thể dục của 45 học sinh được sắp theo thứ tự không giảm.

Tứ phân vị thứ ba \({Q_3} = \frac{{{x_{34}} + {x_{35}}}}{2} \in \left[ {60;80} \right)\).

Ta có \({Q_3} = 60 + \frac{{\frac{{3 \cdot 45}}{4} - 32}}{7} \cdot 20 = 65\) phút.

d) Mốt là giá trị có khả năng xuất hiện cao nhất khi lấy mẫu.

Ta có \({M_0} = 20 + \frac{{15 - 9}}{{\left( {15 - 9} \right) + \left( {15 - 8} \right)}} \cdot 20 \approx 29\) phút.

Đáp án: a) Sai;   b) Sai;   c) Đúng;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Cỡ mẫu của mẫu số liệu trên bằng 40.

Đúng
Sai

b) Giá trị đại diện của nhóm \(\left[ {30;40} \right)\) là 35.

Đúng
Sai

c) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là \({Q_1} = 48\).

Đúng
Sai
d) \({Q_3} - {Q_1} = 14\).
Đúng
Sai

Lời giải

a) Cỡ mẫu \(n = 2 + 10 + 16 + 8 + 2 + 2 = 40\).

b) Giá trị đại diện của nhóm \(\left[ {30;40} \right)\) là \(\frac{{30 + 40}}{2} = 35\).

c) Gọi \({x_1};{x_2};...;{x_{40}}\) là 40 giá trị được sắp theo thứ tự không giảm.

Tứ phân vị thứ nhất là \(\frac{{{x_{10}} + {x_{11}}}}{2}\) mà \({x_{10}};{x_{11}} \in \left[ {40;50} \right)\) nên nhóm này chứa tứ phân vị thứ nhất.

Ta có \({Q_1} = 40 + \frac{{\frac{{40}}{4} - 2}}{{10}} \cdot 10 = 48\).

d) Tứ phân vị thứ ba là \(\frac{{{x_{30}} + {x_{31}}}}{2}\) mà \({x_{30}};{x_{31}} \in \left[ {60;70} \right)\) nên nhóm này chứa tứ phân vị thứ ba.

Ta có \({Q_3} = 60 + \frac{{\frac{{3 \cdot 40}}{4} - 28}}{8} \cdot 10 = 62,5\).

Suy ra \({Q_3} - {Q_1} = 62,5 - 48 = 14,5\).

Đáp án: a) Đúng;   b) Đúng;   c) Đúng;   d) Sai.

Lời giải

a) Do số bệnh nhân đến khám là số nguyên nên ta hiệu chỉnh lại như sau:

Số bệnh nhân

\(\left[ {0,5;10,5} \right)\)

\(\left[ {10,5;20,5} \right)\)

\(\left[ {20,5;30,5} \right)\)

\(\left[ {30,5;40,5} \right)\)

\(\left[ {40,5;50,5} \right)\)

Số ngày

7

8

7

6

2

Tổng số ngày khám là \(7 + 8 + 7 + 6 + 2 = 30\).

Gọi \({x_1};{x_2};...;{x_{30}}\) là số bệnh nhân đến khám mỗi ngày xếp theo thứ tự không giảm.

Tứ phân vị thứ nhất là \({x_8} \in \left[ {10,5;20,5} \right)\).

Ta có \({Q_1} = 10,5 + \frac{{\frac{{30}}{4} - 7}}{8} \cdot 10 = 11,125\).

Tứ phân vị thứ hai là \(\frac{{{x_{15}} + {x_{16}}}}{2} \in \left[ {10,5;20,5} \right)\).

Vì \({x_{15}} \in \left[ {10,5;20,5} \right);{x_{16}} \in \left[ {20,5;30,5} \right)\) nên tứ phân vị thứ hai của mẫu số liệu là \({Q_2} = 20,5\).

Tứ phân vị thứ ba là \({x_{23}} \in \left[ {30,5;40,5} \right)\).

Ta có \({Q_3} = 30,5 + \frac{{\frac{{3 \cdot 30}}{4} - 22}}{6} \cdot 10 \approx 31,3\).

b) Vì \({Q_1};{Q_2};{Q_3}\) đều nhỏ hơn 35 nên nhận định của đề bài không hợp lí.

Câu 3

a) Số cuộc gọi trung bình mỗi ngày là 8,1.

Đúng
Sai

b) Nhóm chứa mốt là \(\left[ {5,5;8,5} \right)\).

Đúng
Sai

c) Mốt của mẫu số liệu ghép nhóm là \( \approx 7,21\).

Đúng
Sai
d) Người đó thực hiện tối đa khoảng 8 cuộc gọi mỗi ngày.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP