Trong các dãy số sau, có bao nhiêu dãy số là cấp số cộng?
a) Dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 4n\).
b) Dãy số \(\left( {{v_n}} \right)\) với \({v_n} = 2{n^2} + 1\).
c) Dãy số \(\left( {{w_n}} \right)\) với \({w_n} = \frac{n}{3} - 7\).
d) Dãy số \(\left( {{t_n}} \right)\) với \({t_n} = \sqrt 5 - 5n\).
Quảng cáo
Trả lời:
Đáp án đúng là: B
a) Ta có \({u_{n + 1}} = 4\left( {n + 1} \right) = 4n + 4 = {u_n} + 4,\forall n \in {\mathbb{N}^*}\). Do đó dãy số \(\left( {{u_n}} \right)\) là một cấp số cộng với công sai \(d = 4\).
b) Có \({v_1} = 2 \cdot {1^2} + 1 = 3\); \({v_2} = 2 \cdot {2^2} + 1 = 9\); \({v_3} = 2 \cdot {3^2} + 1 = 19\) nên dãy số \(\left( {{v_n}} \right)\) không là cấp số cộng.
c) Có \({w_{n + 1}} = \frac{{n + 1}}{3} - 7\)\( = \frac{n}{3} + \frac{1}{3} - 7\)\( = {w_n} + \frac{1}{3},\forall n \in {\mathbb{N}^*}\). Do đó dãy số \(\left( {{w_n}} \right)\) là một cấp số cộng với công sai \(d = \frac{1}{3}\).
d) Có \({t_{n + 1}} = \sqrt 5 - 5\left( {n + 1} \right)\)\( = \sqrt 5 - 5n - 5 = {t_n} - 5,\forall n \in {\mathbb{N}^*}\). Do đó dãy số \(\left( {{t_n}} \right)\) là một cấp số cộng với công sai \(d = - 5\).
Vậy có 3 dãy số là cấp số cộng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Qua 3 điểm không thẳng hàng ta xác định được một và chỉ một mặt phẳng.
Do đó có \(C_4^3 = 4\) mặt phẳng đi qua 3 trong số 4 điểm trên.
Câu 2
Lời giải
Đáp án đúng là: D
Có \(\lim \frac{{3 \cdot {2^{n + 1}} - 2 \cdot {3^{n + 1}}}}{{4 + {3^n}}}\)\( = \lim \frac{{6 \cdot {2^n} - 6 \cdot {3^n}}}{{4 + {3^n}}}\)\( = \lim \frac{{6 \cdot {{\left( {\frac{2}{3}} \right)}^n} - 6}}{{4 \cdot {{\left( {\frac{1}{3}} \right)}^n} + 1}} = - 6\).
Vì \(\lim {\left( {\frac{2}{3}} \right)^n} = 0\); \(\lim {\left( {\frac{1}{3}} \right)^n} = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
