Câu hỏi:

19/11/2025 10 Lưu

Cho cấp số cộng \(\left( {{u_n}} \right)\)với \({u_5} = - 15\); \({u_{20}} = 60\). Tổng của 10 số hạng đầu tiên của cấp số cộng này là

A. \({S_{10}} = - 125\).  
B. \({S_{10}} = - 250\).    
C. \({S_{10}} = 200\).    
D. \({S_{10}} = - 200\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

\(\left\{ \begin{array}{l}{u_5} = {u_1} + 4d = - 15\\{u_{20}} = {u_1} + 19d = 60\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = - 35\\d = 5\end{array} \right.\).

Khi đó \({S_{10}} = \frac{{\left( {2{u_1} + 9d} \right)10}}{2}\)\( = \frac{{\left[ {2 \cdot \left( { - 35} \right) + 9 \cdot 5} \right]10}}{2}\)\( = - 125\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Qua 3 điểm không thẳng hàng ta xác định được một và chỉ một mặt phẳng.

Do đó có \(C_4^3 = 4\) mặt phẳng đi qua 3 trong số 4 điểm trên.

Câu 2

A. \(\frac{3}{2}\).     
B. \(0\).      
C. \(\frac{6}{5}\).     
D. \( - 6\).

Lời giải

Đáp án đúng là: D

\(\lim \frac{{3 \cdot {2^{n + 1}} - 2 \cdot {3^{n + 1}}}}{{4 + {3^n}}}\)\( = \lim \frac{{6 \cdot {2^n} - 6 \cdot {3^n}}}{{4 + {3^n}}}\)\( = \lim \frac{{6 \cdot {{\left( {\frac{2}{3}} \right)}^n} - 6}}{{4 \cdot {{\left( {\frac{1}{3}} \right)}^n} + 1}} = - 6\).

\(\lim {\left( {\frac{2}{3}} \right)^n} = 0\); \(\lim {\left( {\frac{1}{3}} \right)^n} = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Ba điểm phân biệt.      
B. Một điểm và một đường thẳng.      
C. Hai đường thẳng cắt nhau.   
D. Bốn điểm phân biệt.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Dãy số tăng.  
B. Dãy số giảm.    
C. Dãy số không tăng, không giảm. 
D. Cả A, B, C đều sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) \cdot g\left( x \right)} \right] = a \cdot b\).    
B. \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - g\left( x \right)} \right] = a - b\).      
C. \(\mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{a}{b}\).            
D. \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + g\left( x \right)} \right] = a + b\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP