Câu hỏi:

19/11/2025 39 Lưu

Cho tứ diện \(ABCD\)\(G\) là trọng tâm của tam giác \(BCD\). Giao tuyến của mặt phẳng \(\left( {ACD} \right)\) và mặt phẳng \(\left( {GAB} \right)\)

A. \(AM\) (\(M\) là trung điểm của \(AB\)).      
B. \(AN\) (\(N\) là trung điểm của \(CD\)).   
C. \(AH\) (\(H\) là hình chiếu của \(B\) trên \(CD\)).            
D. \(AK\) (\(K\) là hình chiếu của \(C\) trên \(BD\)).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Media VietJack

Kẻ \(BG \cap CD = N\).

\(G\) là trọng tâm của tam giác \(BCD\) nên \(N\) là trung điểm của \(CD\).

Khi đó \(A,N\) là điểm chung của hai mặt phẳng \(\left( {ACD} \right)\)\(\left( {GAB} \right)\).

Do đó \(\left( {ACD} \right) \cap \left( {GAB} \right) = AN\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Nếu \(\lim {u_n} = + \infty \)\(\lim {v_n} = a > 0\) thì \(\lim \left( {{u_n}{v_n}} \right) = + \infty \).               
B. Nếu \(\lim {u_n} = a \ne 0\)\(\lim {v_n} = \pm \infty \) thì \[\lim \left( {\frac{{{u_n}}}{{{v_n}}}} \right) = 0\].              
C. Nếu \(\lim {u_n} = a > 0\)\(\lim {v_n} = 0\) thì \[\lim \left( {\frac{{{u_n}}}{{{v_n}}}} \right) = + \infty \].          
D. Nếu \(\lim {u_n} = a < 0\)\(\lim {v_n} = 0\)\({v_n} > 0,\forall n\) thì \[\lim \left( {\frac{{{u_n}}}{{{v_n}}}} \right) = - \infty \].

Lời giải

Đáp án đúng là: C

Nếu \(\lim {u_n} = a > 0\)\(\lim {v_n} = 0\) thì \[\lim \left( {\frac{{{u_n}}}{{{v_n}}}} \right) = + \infty \] là sai vì chưa rõ dấu của \({v_n}\).

Lời giải

Đáp án đúng là: D

Qua 3 điểm không thẳng hàng ta xác định được một và chỉ một mặt phẳng.

Do đó có \(C_4^3 = 4\) mặt phẳng đi qua 3 trong số 4 điểm trên.

Câu 3

A. \(\frac{3}{2}\).     
B. \(0\).      
C. \(\frac{6}{5}\).     
D. \( - 6\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{x} = + \infty \).  
B. \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{x} = - \infty \).           
C. \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{{{x^5}}} = + \infty \).    
D. \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{{\sqrt x }} = + \infty \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(y = {x^3} - x\).          
A. \(y = {x^3} - x\).          
C. \(y = \frac{{2x - 1}}{{x - 1}}\).      
D. \(y = \sqrt {{x^2} - 1} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Đường thẳng \(EF\) song song với mặt phẳng \(\left( {SAC} \right)\).      
B. Đường thẳng \(EF\) cắt đường thẳng \(AC\).      
C. Đường thẳng \(AC\) song song với mặt phẳng \(\left( {BEF} \right)\).     
D. Đường thẳng \(CD\) song song với mặt phẳng \(\left( {BEF} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP