Cho tứ diện \(ABCD\) với \(M,N\) lần lượt là trọng tâm các tam giác \(ABD,ACD\). Xét các khẳng định sau:
1) \(MN{\rm{//}}\left( {ABC} \right)\).
2) \(MN{\rm{//}}\left( {BCD} \right)\).
3) \(MN{\rm{//}}\left( {ACD} \right)\).
4) \(MN{\rm{//}}\left( {ABD} \right)\).
Các mệnh đề nào đúng?
Quảng cáo
Trả lời:
Đáp án đúng là: A

Gọi \(I\) là trung điểm của \(AD\).
Vì \(M,N\) lần lượt là trọng tâm các tam giác \(ABD,ACD\) nên \(\frac{{IM}}{{IB}} = \frac{{IN}}{{IC}} = \frac{1}{3}\).
Suy ra \(MN{\rm{//}}BC\) mà \(BC \subset \left( {ABC} \right),BC \subset \left( {BCD} \right)\) nên \(MN{\rm{//}}\left( {ABC} \right),MN{\rm{//}}\left( {BCD} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Qua 3 điểm không thẳng hàng ta xác định được một và chỉ một mặt phẳng.
Do đó có \(C_4^3 = 4\) mặt phẳng đi qua 3 trong số 4 điểm trên.
Câu 2
Lời giải
Đáp án đúng là: D
Có \(\lim \frac{{3 \cdot {2^{n + 1}} - 2 \cdot {3^{n + 1}}}}{{4 + {3^n}}}\)\( = \lim \frac{{6 \cdot {2^n} - 6 \cdot {3^n}}}{{4 + {3^n}}}\)\( = \lim \frac{{6 \cdot {{\left( {\frac{2}{3}} \right)}^n} - 6}}{{4 \cdot {{\left( {\frac{1}{3}} \right)}^n} + 1}} = - 6\).
Vì \(\lim {\left( {\frac{2}{3}} \right)^n} = 0\); \(\lim {\left( {\frac{1}{3}} \right)^n} = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
