Câu hỏi:

19/11/2025 42 Lưu

Một loại vi khuẩn sau mỗi phút số lượng tăng gấp đôi biết rằng sau 5 phút người ta đếm được có 64 000 con. Hỏi sau bao nhiêu phút thì có được 2 048 000 con?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số lượng vi khuẩn tăng sau mỗi phút là một cấp số nhân \(\left( {{u_n}} \right)\) với công bội \(q = 2\).

Ta có \({u_6} = 64\;000\)\( \Leftrightarrow {u_1}{q^5} = 64\;000\)\( \Leftrightarrow {u_1} \cdot {2^5} = 64\;000\)\( \Leftrightarrow {u_1} = 2\;000\).

Sau \(n\) phút thì số lượng vi khuẩn là \({u_{n + 1}}\).

\({u_{n + 1}} = {u_1}{q^n} = 2\;048\;000\)\( \Leftrightarrow 2\;000 \cdot {2^n} = 2\;048\;000\)\( \Leftrightarrow {2^n} = 1\;024 \Leftrightarrow n = 10\).

Vậy sau 10 phút thì có được 2 048 000 con vi khuẩn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Nếu \(\lim {u_n} = + \infty \)\(\lim {v_n} = a > 0\) thì \(\lim \left( {{u_n}{v_n}} \right) = + \infty \).               
B. Nếu \(\lim {u_n} = a \ne 0\)\(\lim {v_n} = \pm \infty \) thì \[\lim \left( {\frac{{{u_n}}}{{{v_n}}}} \right) = 0\].              
C. Nếu \(\lim {u_n} = a > 0\)\(\lim {v_n} = 0\) thì \[\lim \left( {\frac{{{u_n}}}{{{v_n}}}} \right) = + \infty \].          
D. Nếu \(\lim {u_n} = a < 0\)\(\lim {v_n} = 0\)\({v_n} > 0,\forall n\) thì \[\lim \left( {\frac{{{u_n}}}{{{v_n}}}} \right) = - \infty \].

Lời giải

Đáp án đúng là: C

Nếu \(\lim {u_n} = a > 0\)\(\lim {v_n} = 0\) thì \[\lim \left( {\frac{{{u_n}}}{{{v_n}}}} \right) = + \infty \] là sai vì chưa rõ dấu của \({v_n}\).

Lời giải

Đáp án đúng là: D

Qua 3 điểm không thẳng hàng ta xác định được một và chỉ một mặt phẳng.

Do đó có \(C_4^3 = 4\) mặt phẳng đi qua 3 trong số 4 điểm trên.

Câu 3

A. \(\frac{3}{2}\).     
B. \(0\).      
C. \(\frac{6}{5}\).     
D. \( - 6\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{x} = + \infty \).  
B. \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{x} = - \infty \).           
C. \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{{{x^5}}} = + \infty \).    
D. \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{{\sqrt x }} = + \infty \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(y = {x^3} - x\).          
A. \(y = {x^3} - x\).          
C. \(y = \frac{{2x - 1}}{{x - 1}}\).      
D. \(y = \sqrt {{x^2} - 1} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Đường thẳng \(EF\) song song với mặt phẳng \(\left( {SAC} \right)\).      
B. Đường thẳng \(EF\) cắt đường thẳng \(AC\).      
C. Đường thẳng \(AC\) song song với mặt phẳng \(\left( {BEF} \right)\).     
D. Đường thẳng \(CD\) song song với mặt phẳng \(\left( {BEF} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP