Trong các trường hợp sau, trường hợp nào là thu thập dữ liệu gián tiếp?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Trường hợp tìm hiểu trên mạng Internet về số ca mắc bệnh COVID-19 ở Việt Nam là phương pháp thu thập gián tiếp.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Cửa hàng đã thu thập dữ liệu được biểu diễn trong biểu đồ trên bằng phương pháp phỏng vấn 1 000 khách hàng. Đây là phương pháp thu thập trực tiếp.
b) Hãy chuyển đổi dữ liệu từ biểu đồ trên sang dạng bảng thống kê theo mẫu sau:
|
Món ăn |
Tỉ lệ phần trăm |
|
Phở |
\[45\% \] |
|
Bún bò |
\[25\% \] |
|
Bánh mì |
\[18\% \] |
|
Gỏi cuốn |
\[12\% \] |
c) Nếu cửa hàng muốn kinh doanh một món ẩm thực duy nhất thì cửa hàng nên ưu tiên chọn món Phở. Vì đây là món ăn được khách hàng lựa chọn nhiều nhất (chiếm \[45\% ).\]
Lời giải
Hướng dẫn giải
Ta có \[{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca\]
Theo bài, \[{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2}\] nên suy ra \[ab + bc + ca = 0.\]
Đặt \[x = ab;y = bc;z = ca.\]
Khi đó \[x + y + z = 0.\] Suy ra \(x + y = - z;\,\,y + z = - x;\,\,z + x = - y.\)
Xét \[\left( {1 + \frac{a}{c}} \right)\left( {1 + \frac{b}{a}} \right)\left( {1 + \frac{c}{b}} \right)\]
\[ = \left( {1 + \frac{{ab}}{{bc}}} \right)\left( {1 + \frac{{bc}}{{ca}}} \right)\left( {1 + \frac{{ca}}{{ab}}} \right)\]
\[ = \left( {1 + \frac{x}{y}} \right)\left( {1 + \frac{y}{z}} \right)\left( {1 + \frac{z}{x}} \right)\]
\[ = \left( {\frac{{y + x}}{y}} \right)\left( {\frac{{z + y}}{z}} \right)\left( {\frac{{x + z}}{x}} \right)\]
\[ = \frac{{ - z}}{y}.\frac{{ - x}}{z}.\frac{{ - y}}{x} = - 1.\]
Xét \[\frac{{{a^3}{b^3} + {b^3}{c^3} + {c^3}{a^3}}}{{3{a^2}{b^2}{c^2}}}\]\[ = \frac{{{{\left( {ab} \right)}^3} + {{\left( {bc} \right)}^3} + {{\left( {ca} \right)}^3}}}{{3ab \cdot bc \cdot ca}}\]
\[ = \frac{{{x^3} + {y^3} + {z^3}}}{{3xyz}}\]\[ = \frac{{{{\left( {x + y} \right)}^3} - 3xy\left( {x + y} \right) + {z^3}}}{{3xyz}}\]
\[ = \frac{{{{\left( { - z} \right)}^3} - 3xy\left( { - z} \right) + {z^3}}}{{3xyz}}\]\[ = \frac{{ - {z^3} + 3xyz + {z^3}}}{{3xyz}} = \frac{{3xyz}}{{3xyz}} = 1.\]
Từ đó, \[T = \frac{{{a^3}{b^3} + {b^3}{c^3} + {c^3}{a^3}}}{{3{a^2}{b^2}{c^2}}} + \left( {1 + \frac{a}{c}} \right)\left( {1 + \frac{b}{a}} \right)\left( {1 + \frac{c}{b}} \right) = 1 + \left( { - 1} \right) = 0.\]
Vậy \(T = 0.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

